Nombre: LU: Nota:

- 1. Sea f(z) una función analítica en todos los puntos de una curva suave C que une los puntos z_1 y z_2 . Indique si las siguientes afirmaciones son siempre ciertas. Justifique (utilice enunciados de teoremas o contraejemplos)
 - i) $f(z_1) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z z_1} dz$.
 - ii) Existe un dominio D (abierto y conexo), donde f es analítica y contiene a la curva C. Además D es simplemente conexo.
 - iii) Si $z_1 = z_2$, entonces $\int_C f(z)dz = 0$.
 - iv) Si existe una función F(z) tal que F'(z) = f(z) sobre la curva C, entonces $\int_C f(z)dz = F(z_2) F(z_1)$.
 - v) Si $z_1 = z_2$ y f tiene primitive sobre C, entonces $\int_C f(z)dz = 0$.
- **2.** Dadas las siguientes funciones de variable compleja: $f(z) = \sum_{n=0}^{\infty} a_n (z-1)^n$ y $g(z) = \frac{f(z)}{(z-1)^2}$, donde $a_0 = 0$, $a_n \neq 0$ para $n \geq 1$ y $\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = 2$,
 - a) Analice la singularidad que presenta la función g(z) en el punto $z_0 = 1$.
 - b) Encuentre la región D del plano complejo donde g(z) es analítica. Justifique.

Recuperatorio - Segundo Coloquio

FUNCIONES DE VARIABLE COMPLEJA

2018

Nombre:LU:Nota:

- 1. Sea f(z) = u(x,y) + iv(x,y) una función de variable compleja definida en un *dominio D múltiplemente* conexo . Sea C una curva cerrada simple, orientada positiva y contenida en D. Indique si las siguientes afirmaciones son siempre ciertas. Justifique (utilice enunciados de teoremas o contraejemplos)
 - i) Si f(z) es derivable en todo $D \implies f(z)$ tiene primitiva en D.
 - ii) Si f(z) tiene primitiva en $D \implies f(z)$ es analítica en todo D.
 - iii) Si f(z) es analítica en $D \Rightarrow \int_C f(z)dz = 0$.
- 2. Sea S(z) la función suma de la serie de funciones: $\sum_{n=0}^{\infty} c_n z^n$. Si $\lim_{n\to\infty} \frac{|c_{n+1}|}{|c_n|} = 1$, muestre que:
 - i) La serie de funciones converge uniformemente en el disco $|z| \le 0.5$.
 - *ii*) La función suma es continua en $|z| \le 0.5$.
 - $ii) S''(0) = 2c_2.$
 - iv) $\int_{|z|=1}^{\infty} \frac{S(z)}{z^{n+1}} dz = 2\pi i c_n$.