Análisis de circuitos de corriente alterna: Impedancia y Admitancia en función de la Capacitancia

Federico Daniel Forte Nerán

Estudiante de Ingeniería Electrónica Universidad Nacional del Sur,Avda. Alem 1253,B8000CPB Bahía Blanca, Argentina federico_fn@hotmail.com Marzo 2012

Resumen: En este informe, se detallara una aplicación de las funciones de variable compleja. El uso de un mapeo bilineal para analizar la impedancia y la admitancia de un circuito de acuerdo a la capacitancia de un capacitor.

Palabras clave: impedancia, admitancia, capacitancia, mapeo bilineal.

I. Introducción

Un mapeo bilineal es un mapeo de la forma:

$$w = \frac{az + b}{cz + d}$$

Donde a, b, c, d son constantes complejas. Se llama mapeo bilineal en z y en w ya que puede ser escrito en la forma Awz + Bw + Cz + D = 0, que es lineal en ambos z y w.

El mapeo inverso es:

$$z = \frac{-dw + b}{cw - a}$$

Al renombrar las constantes como $\lambda=a/c$, $\mu=bc-ad$, $\alpha=c2$ y $\beta=cd$, la ecuación se transforma en:

$$w = \lambda + \frac{\mu}{\alpha z + \beta}$$

Y se puede descomponer el mapeo para describir las transformaciones:

z
$$\rightarrow$$
αz(rotación y ampliación) \rightarrow αz + β(traslación) $\rightarrow \frac{1}{\alpha z + \beta}$ (inversión) $\rightarrow \frac{\mu}{\alpha z + \beta}$ (ampliación y

rotación)
$$\rightarrow \frac{\mu}{\alpha z + \beta} + \lambda$$
 (traslación) = w

Generalmente, $w = \alpha z + \beta$ no cambia la forma del plano, pero el mapeo de inversión w = 1/z mapeo círculos o rectas en el plano z en círculos o rectas en el plano w, esto implica, que en el mapeo bilineal también exhibe esta propiedad importante, es decir, también mapeara círculos o rectas en el plano z en círculos o rectas en el plano w.

II. APLICACIÓN A CIRCUITOS DE CORRIENTE ALTERNA

Para el circuito RC de la figura 1, deseamos encontrar la variación en la impedancia Z y la admitancia Y conforme la capacitancia Z del capacitor varía de Z o Z.

La admitancia es la inversa de la impedancia, luego

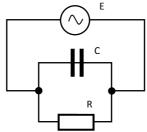


Figura 1: Circuito RC

$$\frac{1}{Z} = \frac{1}{R} + j\omega C; Y = \frac{1}{Z}$$

Donde R es la resistencia y ω una constante; Sacando denominador común R obtenemos $\frac{1}{Z} = \frac{1 + j\omega CR}{R}$

Despejando tenemos que

$$Z = \frac{R}{1 + j\omega CR}$$

Esta ecuación es fácilmente interpretable como un mapeo bilineal con Z y C como las dos variables. Pero lo que varía de 0 a ∞ es C, luego despejamos la ecuación de mapeo bilineal para obtener

$$C = \frac{R - Z}{j\omega RZ}$$

Como Z es una variable compleja, remplazamos Z = x + jy

$$C = \frac{(x+jy-R)(y+jx)}{\omega R(x^2+y^2)}$$

Al ser C real, igualamos la parte imaginaria de esta ecuación a cero

$$0 = x^2 + y^2 - Rx$$

$$x^2 + y^2 = Rx$$

Esto representa un circulo con centro en (½R,0) y radio en ½R.

En el caso de la admitancia que es la inversa de la impedancia, se ve por la siguiente ecuación

$$Y = \frac{1}{R} + j\omega C.$$

A. Análisis gráfico de la Impedancia

En la figura 2 se observa como el eje real en el plano C es mapeado en el círculo dado por la ecuación anterior en el plano Z. Cuando C = 0, Z = R, esto es correcto, ya que sin la presencia del capacitor la impedancia está dada por la resistencia. Si $C \rightarrow \infty$ entonces $Z \rightarrow 0$, así el eje real positivo en el plano es mapeado en el semicírculo superior o en el inferior. Así vemos que la impedancia Z se comporta variando sobre un semicírculo cuando C varía desde 0 a ∞ .

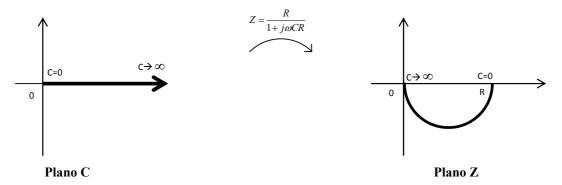


Figura 2: Gráfico de la de la variación de capacidad e impedancia en los respectivos planos C y Z.

B. Análisis gráfico de la Admitancia

En la figura 3 se observa la admitancia, que es un mapeo lineal, sólo se realiza una traslación, luego una rotación y ampliación, por lo tanto el análisis es mucho más sencillo, la admitancia se comportara variando sobre una semirrecta en el plano Y.

III. CONCLUSIONES

Como conclusión puedo aportar que la aplicación resulta muy conveniente para entender en un modo introductorio, como funcionan la impedancia y la admitancia graficamente ya que no son conceptos tan faciles de analizar, pero realizando un mapeo o transformacion se puede ver sencillamente como interactúan en un circuito se este estilo.

REFERENCIAS

- [1] G. James, Matemáticas Avanzadas para Ingeniería, Pearson Educación, 2002.
- [2] R. Dorf y J. Svoboda, Circuitos eléctricos, Alfaomega, 2006.
- [3] G. Calandrini, *Guía de definiciones y teoremas*, segundo cuatrimestre 2011.

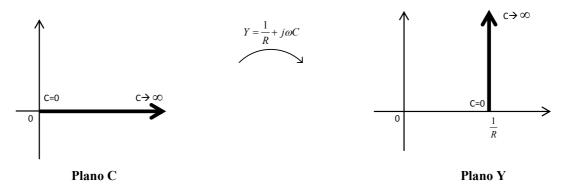


Figura 3: Gráfico de la variación de capacidad y admitancia en los respectivos planos C e Y.