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Abstract

This paper addresses the problem of Simultaneous Localization and Mapping (SLAM) for very large

environments. A Hybrid architecture is presented that makes use of the Extended Kalman Filter to

perform SLAM in a very efficient form and a Monte Carlo localiser to resolve data association problems

potentially present when returning to a known location after a large exploration period. Algorithms

to improve the convergence of the Monte Carlo filter are presented that consider vehicle and sensor

uncertainty. The proposed algorithm incorporates significant integrity to the standard SLAM algorithms

by providing the ability to handle multimodal distributions over robot pose in real time while the

mapping process is on hold. Experimental results in outdoor environments are presented to demonstrate

the performance of the algorithm proposed.
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I. Introduction

Reliable autonomous navigation in highly unstructured outdoor environments presents

formidable problems in terms of sensing, perception and navigation algorithms [1]. The

problem of localization given a map of the environment or estimating the map knowing

the vehicle position is known to be a solved problem and has been in fact applied in many

research and industrial applications [2] [3]. Outdoor environments present additional

challenges due to the lack of sensors and perception algorithms that can work reliably in

all environments and under all weather conditions.

This is starting to change with sensors like Laser and Radars capable of returning 2-D

and 3-D reliable and consistent information and with important progress in perception

algorithms [4] [5]. Once the sensing and perception problem is addressed, the localization

problem can be solved using a number of approaches. Some methods are based on the

non-linear version of the Kalman Filter, the Extended Kalman Filter (EKF). Other

methods use approximations of the probabilistic density of the states conditioned to the

measures obtained. These approaches can be classified into three categories: the mixture

of densities [6], the grid based methods [7] and the Monte Carlo methods [8].
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A much more complicated problem is when both the map and the vehicle position

have to be estimated. This problem is usually referred to as Simultaneous Localization

and Mapping (SLAM) [9] or Concurrent Map Building and Localization (CML) [10].

This problem has also been addressed in [11] using an expectation maximization method

in indoor problems and in [6] using a sum of Gaussian in sub-sea applications. These

algorithms are suitable for handling multi-modal probability distribution. Although these

methods have proven to be very robust in many localization applications, their extension

to SLAM is computationally expensive making them difficult to apply in real time. In

a recent work [12] an algorithm named FASTSlam was presented that decomposes the

model into a linear part (the model of the evolution of the map) and a nonlinear part

formed by the model representing the dynamic of the states of the vehicle. The results

presented assume the data association is known. This gap is attempted to be filled in

[13]. Another drawback is that its performance degrades when there is low correlation

between landmarks and\or high uncertainty in the vehicle pose estimation. In this case a

large number of particles is necessary to keep a good approximation of the real probability

distribution. This situation arises when the SLAM process is applied over a large area

or when the landmark population is low.

Kalman Filter approaches can be extended to solve the SLAM problem in very large

environments. In [14] a Compressed Extended Kalman Filter (CEKF) algorithm was

introduced that significantly reduces the computational requirement without introduc-

ing any penalties in the accuracy of the results. Sub-optimal simplifications were also

presented in [15] to update the full covariance matrix of the states bounding the compu-

tational cost and memory requirements.

Although the implementation of SLAM can be made very efficient in terms of com-

putational complexity and memory requirements, there are still fundamental problems

that need to be solved. The SLAM algorithms are based on an exploration stage and

re-visit of known places (closing a loop) to register the new learned map to the known
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map. Depending on the quality of the kinematics models and external sensors used, the

exploration stage could be extended to large areas. Nevertheless no matter how good the

sensors and models are, at one point the accumulated error will make the correct data

association task impossible. Although significant improvements to the standard Nearest

Neighbor (NN) data association algorithm were presented in [16] there will be cases where

the wrong hypothesis will be selected and the filter will have a catastrophic failure. This

is an inherent limitation of all simultaneous navigation and mapping methods based on

single hypothesis EKF techniques and is independent of the implementation method or

model used.

Some recent papers [17][18] present algorithms addressing this problem using maximum

likelihood mapping with a posterior estimation implemented with a particle filter and grid

based methods respectively. Both methods present approximations of the full posterior

estimation and may generate over-confident results since correlation with part of the map

is not considered to make the algorithms implementable in real time. This can be taken

into account in [17] by adjusting a tuning constant K but at the same time it can make

the algorithm very expensive in large environments.

In this paper we present a robust solution to this problem using a combination of

the CEKF with a Monte Carlo Filter. This hybrid architecture is designed to exploit

the efficiency of the CEKF algorithm to evaluate the full posterior vehicle and map

states estimates and a Monte Carlo Filter to resolve the data association problem when

required.

The Monte Carlo Filter is only activated under potential data association problems. It

is initialized exploiting the known vehicle and map state statistics provided by the CEKF

filter. Several techniques are presented to accelerate the convergency of the algorithm to

make them very efficient for on-line applications. The algorithm is presented for generic

range\bearing sensors, range only sensors and bearing only sensors.

The paper is organized as follows. Section II presents the Hybrid SLAM approach.
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Section III presents the Bayes framework and the Particle Filter implementation with

extensions to support range and bearing and range / bearing only sensors. Section

IV presents practical considerations for real time implementation. Section V presents

experimental results in outdoor unstructured environments. Finally Section VI presents

conclusions.

II. A Hybrid SLAM approach

Most EKF implementations generate state estimations with mono-modal probability

distributions and are not capable of handling multimodal probability distributions. These

situations are typical when closing large loops, that is, revisiting known places after a

large exploration period. It is at this stage where the standard data association methods

usually fail. A particle filter can address this problem since it naturally deals with multi-

hypothesis problems.

The proposed hybrid architecture uses CEKF under normal conditions to perform

SLAM. At a certain time the system may not be able to perform the association task

due to large errors in vehicle pose estimation. This is an indication that the filter can

not continue working assuming a mono-modal probability density distribution. At this

time, we have the CEKF estimated mean and deviation of the states representing the

vehicle pose and landmark positions. With the currently estimated map, a de-correlated

map is built using a coordinate transform and the decorrelation procedures presented in

[15]. A particle filter initialized using the available statistics is then used to resolve the

position of the vehicle as a localization problem. When the multi-hypothesis problem is

resolved the CEKF is restarted with the states values back propagated to the time when

the data association problem was detected. Then the CEKF resumes operation until a

new potential data association problem is detected.

Under the SLAM framework the vehicle starts at a position with known uncertainty

and obtains measurements of the environment relative to its location. This information
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is used to incrementally build and maintain a navigation map and to localize the vehicle

with respect to this map. The system will detect new features at the beginning of the

mission and when the vehicle explores new areas. Once these features become reliable

and stable they are incorporated into the 2 dimensional map becoming part of the state

vector. The state vector is then given by:

X =

 XL

m


XL = (xL, yL, ϕL)T ∈ R3

m = (x1, y1, .., xN , yN )T ∈ R2N

(1)

where (x, y, ϕ)L and (x, y)i are the states corresponding to the vehicle and N features

incorporated into the map m respectively. Since the environment is considered to be

static the discrete dynamical model for the extended system has the form:

XL (k + 1) = f (XL (k), U(k)) + γ

m (k + 1) = m (k)
(2)

Since the landmarks are assumed static the Jacobian matrix for the extended system

becomes:

∂f
∂X =

 ∂f
∂x̃L

∅

∅T I

 =

 J1 ∅

∅T I


J1 ∈ R3x3, ∅ ∈ R3xN , I ∈ R2Nx2N

(3)

These models can then be used with a standard EKF algorithm to build and maintain

a navigation map of the environment and to track the position of the vehicle. It is well

known that the solution of this problem using standard EKF algorithms has computa-

tional requirements of O(N2), N being the states used to represent the landmarks and

vehicle pose. As noted before the computational requirement can be reduced to constant

time [14] almost independently of the map’s size. This algorithm is very efficient when

the vehicle remains in local areas for a significant period of time or when high frequency

external information is incorporated.
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III. Monte Carlo Localization

The localization problem under a probabilistic estimation approach requires that the

marginal probability density p(xLk
|m,Zk,Uk,x0) must be known for all k, where xLk

is the vehicle state, x0 its initial condition, m are the states representing a feature

in the map and Zk and Uk are the observations and input signals respectively at

time k. The recursive evaluation of this density, assuming that the a priori density

p(xLk−1 |m,Zk−1,Uk−1,x0) is known is

p(xLk
|m,Zk,Uk,x0) = κp(zk|m,xLk

)∫
p(xLk

|xLk−1 , uk)p(xLk−1 |m,Zk−1,Uk−1,x0)dxLk−1

(4)

where κ is a normalization constant, p(zk|xLk
,m) represents the observation model and

p(xLk
|xLk−1 , uk) models the vehicle dynamic.

Equation 4 can be implemented using Particle Filters. These filters approximate the

joint posterior density using a set of random samples called particles. Theoretically, as

the number of samples becomes very large, this representation tends to be exact and the

filter estimation identical to the Bayesian ideal filter (eq. 4).

Several approaches have been proposed to implement this type of filter. One of such

algorithms was presented by Gordon et al. [19] and is known as the Bayesian Bootstrap

Filter or SIR (Sampling Importance Resampling). A similar algorithm, Condensation

Algorithm, has been independently proposed by Isard and Blake [20]. In general these

filters are usually known as Monte Carlo Filters.

The basic SIR filter algorithm [19] can be described as follows. A set of samples or

“particles” is obtained from the prior density distribution. These particles are propagated

through the system equations and assigned a weight proportional to their likelihood.

Then a resampling stage is used to reduce the set of weighted particles to a set of equally

weighted particles. This set can be thought of as an approximate sample for the posterior

distribution and is used as the starting point for the next iteration of the algorithm. One

7



of the main advantages of the particle filter is the ease with which it can be applied to

most estimation problems. The algorithm is straightforward and the class of models it

can be applied to is very large. It is also possible to use algorithms with computation

complexity of O(R) where R is the number of particles [21].

In this work we use the SIR filter approach presenting methods to improve the initial

distribution of particles and to reduce the computer complexity for the filter implemen-

tation in real time and its interface with the CEKF for SLAM applications.

A. Localization with the Particle Filter

Particle Filters approximate the joint posterior density with a set of random samples

called particles. As the number of samples becomes large, they provide a practically exact

and equivalent representation of the required distribution, that is the filter output will be

close to the Bayesian filter. In this work we use the SIR (Sampling Importance Resam-

pling) filter [19] to localize a vehicle in a predefined map using range and/or bearing in-

formation. Assuming that R samples {xi
k−1}R

i=1 of the previous posterior distribution are

available, the process model is then used to propagate these samples to obtain {x̃i
k}R

i=1.

The new samples represent the a priori probability density p(xk|m,Zk−1,Uk,x0).

The update stage is performed in two steps. The first step consists of the evaluation

of the likelihood for each predicted particle as,

wi =
p(zk|m, x̃i

k)
R∑

j=1

p(zk|m, x̃j
k)

(5)

where zk is the observation at time k. The pair {x̃i
k}R

i=1 , {wi
k}R

i=1 defines a discrete

distribution that tends to the real continuous posterior distribution as R tends to infinity.

The second stage performs a resampling by selecting only the particles with probability

pr{xj
k = x̃i

k} = wi
k for each j. Algorithms that perform this stage with computational

complexity ∝ R2 and ∝ R can be found in [19] and [21] respectively.

Finally the probability of measuring zk given the state x̃k is required, that is p(zk|m, x̃i
k).
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This pdf can be approximated with a sum of Gaussian (SOG) assuming each beacon is

represented with a Gaussian distribution centered at its estimated position and consid-

ering all the uncertainties present in the observation:

p(zk|m,xLk
) =

n∑
1

αi

2πσrσβ
e
−0.5(

(xm−xi)
2

σ2
x

+
(ym−yi)

2

σ2
y

)
(6)

where (xi, yi) are the landmarks a priori estimated positions, σx and σy are the corre-

spondent deviation in x and y and (xm, ym) are the observations obtained from each

particle. For the range and bearing case they can be expressed as follows:

xm = x̃L
i
k + zr cos(zβ − pi/2 + ϕ̃L

i
k)

ym = ỹL
i
k + zr sin(zβ − pi/2 + ϕ̃L

i
k)

(7)

where (x̃L
i
k, ỹL

i
k, ϕ̃L

i
k) are each of the states of the particles and (zr, zβ) are the observa-

tions. The sum of Gaussians 6 is augmented with a virtual beacon centered at the origin

of the map and represented by a Gaussian with very large deviation. This is to overcome

the problem of observing an object with no correspondence in the map. The following

sub-sections present the localization equations that consider uncertainty in the position

of the landmarks in addition to the noise in the observations.

A.1 Localization with Range and Bearing Information

For the case of range and bearing observation (zr, zβ), we considered that the measure-

ments are contaminated by additive noise (γr, γβ) with a given probability distribution.

The conditional probability distribution of the observation (zr, zβ) with respect to the

vehicle states, considering the uncertainty in the landmark position and the observation

noise, can be obtained from the following integral,

p(zk|m,xLk
) =

∫
Ω

p(mx,my, γr, γβ) µ |−→dS|

Ω = {(mx,my, γr, γβ) ∈ <4}
(8)

Equation 8 is a surface integral and p(mx,my, γr, γβ) is the joint probability density

distribution of the random variables (r.v.) due to the four noise sources. The factor
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µ · |−→dS| is the surface differential used to perform the integration over the surface region

defined by the equality constraint given in equation 9.

zr =
√

(mx − xL)2 + (my − yL)2 + γr

zβ = arctan(my−yL

mx−xL
)− ϕ + π

2 + γβ

(9)

The probability density distribution given in Equation 8 can be evaluated using the

probability density distribution restricted to the observations,

pzr,zβ
(zr0 , zβ0) =

∂Fzr,zβ
(zr0 , zβ0)

∂zr∂zβ
(10)

where Fzr,zβ
(zr0 , zβ0) is the probability distribution. After some manipulations this

distribution can be expressed as

Fzr,zβ
(zr0 , zβ0) =

∞∫
−∞

∞∫
−∞

γr0∫
−∞

γr0∫
−∞

p(mx,my, γr, γβ) · dγr · dγβ · dmx · dmy

γr0 = zr0 −
√

(mx − xL)2 + (my − yL)2,

γβ0 = zβ0 − arctan( my−yL

mx−xL
) + ϕ− π

2 ,

(11)

The integral argument is the probability density distribution of the four r.v.,

p(mx,my, γr, γβ) = pmx,my,γr,γβ
(mx,my, γr, γβ) (12)

Finally, the probability density distribution is evaluated by differentiating the proba-

bility distribution function (11),

pzr,zβ
(zr0 , zβ0) =

∂Fzr,zβ
(zr0 ,zβ0 )

∂zr∂zβ
=

∞∫
−∞

∞∫
−∞

p(mx,my, γr0(mx,my), γβ0(mx,my))dmxdmy

(13)

The integral evaluation 13 can be simplified by reducing the integration region to the

mx,my space close to the landmarks. This simplification is valid provided that the pdf

pmx,my (mx,my) is approximated by a sum of Gaussians pdf’s (SOG). In this work a
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region of size 2σ deviation centered at the expected position of the landmark is used.

The probability density distribution pmx,my
(mx,my) becomes negligible outside these

regions.

A.2 Localization with bearing only information

In this case the estimation of the vehicle position and velocity is based on a series of

bearing only observations. Examples of this type of sensor are video cameras and certain

types of lasers. The lack of range information makes localization a very difficult problem.

The observations model in 2-D is

zβj
= ϕL − arctan

yi − yL

xi − xL
+

π

2
(14)

where (xi, yi) represents the position of the beacon i, (xL, yL, ϕL) is the vehicle pose and

βj is the observed bearing to the beacon j. The probability p(zk|xLk
) can be calculated

similarly to (eq. 13) considering all the sources of uncertainties

pzβ
(zβ0) =

∞∫
−∞

∞∫
−∞

p(mx,my, γβ0(mx,my)) · dmx · dmy (15)

where

γβ0 = γβ0 (mx,my) = β − arctan
(

my − yL

mx − xL

)
+ ϕL −

π

2
(16)

A.3 Localization with range only information

Other common types of sensors are those that return range only information or range

and bearing but with large uncertainty in bearing such as ultrasonic sensors. The obser-

vations model can then be written

zrj
=

√
(yi − yL)2 + (xi − xL)2 (17)

where (xi, yi) is the position of the observed beacon i, (xL, yL, ϕL) is the vehicle position

and zrj
is the j observation in the sensor data frame.
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The conditional probability density distribution p(zk|xLk
) can be calculated according

to (eq. 18) considering all the uncertainties present

pzr (zr0) =

∞∫
−∞

∞∫
−∞

p(mx,my, γr0(mx,my)) · dmx · dmy (18)

where

γr0 = zr0 −
√

(mx − xL)2 + (my − yL)2 (19)

IV. Practical implementation

This section presents several important implementation issues that need to be taken

into account to maximize the performance of the hybrid architecture presented. These

are the transformation of the relative to absolute map and the determination of the area

of interest, the particle initialization and interface between the CEKF and the particle

filter. The solutions presented consider the uncertainties in vehicle, map and sensor to

maximize the number of particles in the most likely position of the vehicle.

A. Map for the particle filter

The SLAM algorithm builds a map while the vehicle explores a new area. The map

states will be, in most cases, highly correlated in a local area. In order to use the

particle filter to solve the localization problem, a two dimensional map probability density

distribution needs to be synthesized from an originally strongly correlated n dimension

map. The decorrelation procedure is implemented in two steps. The map, originally

represented in global coordinates is now represented in a local frame defined by the

states of two beacons that are highly correlated to all the local landmarks. The other

local landmarks are then referenced to this new base. This results in a covariance matrix

of the form,

12



pm =



pm1 C12 · · · C1m

C21 pm2 · · ·
...

...
. . . . . .

...

Cm1 · · ·
. . . pmm


(20)

where the cross-correlation components between states of different landmarks are usually

weak, i.e. they meet the condition Ci,j/
√

pmi
· pmj

<< 1. To de-correlate the map it

is necessary to apply an additional step. A conservative bound matrix for (eq. 20) can

be easily obtained increasing the diagonal components and deleting the cross-correlation

terms. This can be implemented as shown in eq 21 where diag[·] represents the elements

of a diagonal matrix [15]. For presentation purposes, all the states in equation 21 are

assumed to belong to different landmarks. The decorrelation procedure performs the

decorrelation of block diagonal matrices, each block matrix being the covariance of the

states representing a particular landmark. Then, each state is decorrelated with respect

to all the other states except from the states that correspond to its associated landmark.

p̃m = diag


pm1 +

j 6=1∑
j

| k1j · C1j |

...

pmm +
j 6=m∑

j

| kmj · Cmj |


(21)

The set {kij}i,j meets the condition kij = 1/kji > 0. This un-correlated map is used

to define a two dimension map probability density distribution used by the particle filter

to localize the vehicle.

B. Particle Filter Initialization

As the number of particles affects both the computational requirements and conver-

gence of the algorithm, it is necessary to select an appropriate set of particles to represent

the a priori density function at time T0, that is, the time when the data association fails.

Since the particle filters work with samples of a distribution rather than its analytic
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expression it is possible to select the samples based on the most probable initial pose

of the rover. A good initial distribution is a set of particles that is dense in at least a

small sub-region that contains the true states value. The initial distribution should be

based in the position and standard deviations reported by the CEKF, and in at least

one observation in a sub-region that contains this true states value. In [22] a localization

approach is presented that replaces particles with low probability with others based in

the observations. Although this algorithm is very efficient it considers that the identity

of that landmark is given ( known data association). This is true in some applications

such as the one addressed in this paper but not common in natural outdoor environ-

ments where landmarks have similar aspects and the presence of spurious objects or new

landmarks is common. In this paper the data association is implicitly done by the lo-

calization algorithm. The multi-hypotheses considered are defined by the uncertainty of

the robot pose estimation. In addition the method presented is able to deal with false

observations. Spurious observations and landmarks that do not belong to the map are

naturally rejected by the localizer. The technique presented in our paper considers the

information from a set of observations to select all particles, not to replace some, only

in the initial distribution and combined with the CEKF estimates as was mentioned

previously. In fact, our localization filter is a Monte Carlo Localization.

The initial distribution is created from range / bearing observations of a set of land-

marks. This probability distribution is dominant in a region that presents a shape similar

to a set of helical cylinders in the space (x, y, ϕ). Each helix centre corresponds to a hy-

pothetical landmark position with its radio defined by the range observation (Figure 1).

The landmarks considered are only the ones that the vehicle can “see” from the location

reported by the CEKF and within the range and field of view of the sensors.

Although it is recognized that some observations will not be due to landmarks, all range

and bearing observations in a single scan are used to build the initial distribution. Even

though a set of families of helices will introduce more particles than a single family of
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Fig. 1. Helix conformation with one measure and one beacon

helices (one observation), it will be more robust in the presence of spurious observations.

By considering that the range / bearing observations are perfect then the dominant

region becomes a discontinuous one dimensional curve (family of helices) C, in the three

dimensional space (x, y, ϕ)

C =
N⋃

i=1

Ci

Ci =


(x, y, ϕ) \

x = x (τ) = xi + zr · cos (τ)

y = y (τ) = yi + zr · sin (τ)

ϕ = ϕ (τ) = τ − zβ − π
2

τ ∈ [0, 2π)



(22)

These regions can be reduced by adjusting the variation of τ according to the uncertainty

in ϕ. Assuming the presence of noise in the observations and in the landmark positions

zr = z∗r + γr, zβ = z∗β + γβ

xi = x∗i + γxi , yi = y∗i + γyi

(23)

this family of helices becomes a family of cylindrical regions surrounding the helices

as shown in Figure 2. The helical cylinder section can be adjusted by evaluating its
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Fig. 2. Helix initialization considering the noise in the observations

sensitivity to the noise sources γxi
, γyi

, γr, γβ .

The same assumptions can be made for the case of using bearing only observations.

ϕL can be expressed as a function of the observations, beacons and vehicle position.

Assuming perfect observations, equation 24 defines a surface in the state space.

S = {(xL, yL, ϕL)|ϕL = arctan
yi − yL

xi − xL
− zβj

+
π

2
} (24)

Although this method can be more efficient than the standard uniform o Gaussian

distribution it is still very demanding in the number of particles. A more efficient algo-

rithm can be designed considering two observations at a time. This leads to the following

equations,

ϕL = arctan yi−yL

xi−xL
− zβa

+ π
2

ϕL = arctan yk−yL

xk−xL
− zβb

+ π
2

(25)

Since the observations belong to a single scan it can be assumed that they are obtained

from the same location. The intersection of the two surfaces defines a curve in the

three-dimensional space of the states (eq. 26).

C = {(x, y, ϕ)|x = x (ϕ) , y = y (ϕ) , ϕ ∈ [0, 2π)} (26)

This is the ideal case of no observation noise and landmarks location perfectly known,
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that is: 

ϕ ∈ [0, 2π)

γβa
= 0

γβb
= 0

(xi, yi) =
(
x0

i , y
0
i

)
(xk, yk) =

(
x0

k, y0
k

)
(27)

By considering the noise in the bearing observations and in the landmark positions, x

and y can be expressed as in (eq. 28)

ρ1 = ϕ + zβa
− π/2 + γβa

ρ2 = ϕ + zβb
− π/2 + γβb

x (ϕ, γβa
, γβb

, xi, yi, xk, yk) = −xk·sin(ρ2)·cos(ρ1)+xi·sin(ρ1)·cos(ρ2)+(yk−yi)·cos(ρ1)·cos(ρ2)
sin(ρ1)·cos(ρ2)−sin(ρ2)·cos(ρ1)

y (ϕ, γβa
, γβb

, xi, yi, xk, yk) = yi − (xi − x) · sin (ρ1)/cos (ρ1)
(28)

where ϕ ∈ [0, 2π), γβa
and γβb

are r.v. with probability density fβ (γβ), (xi, yi) are r.

v. with probability density fm (xi, yi) and (xk, yk) are r.v. with probability density

fm (xk, yk).

Taking into account the different sources of noise, the curve transforms into a region

that is named curved cylinder. With no data association a pair of observations will

generate a family of curved cylinders to cover all possible hypotheses. It is possible to

generate a sample of this distribution by applying equation 28 to samples of the six r. v.

The multi-hypothesis nature of the distribution fL(·) will generate a family of regions

(each region surrounding an ideal noiseless curve). This initialization is significantly

less expensive than a uniform distributed sample in a large rectangular region in the

(x, y, ϕ) space or even a Gaussian distribution in this region. An example of this type of

initialization is shown in Figure 10 in section V.

In the case of range only observations, the initialization is very similar to the range and

bearing problem. In this case the main difference is in the evaluation of the orientation.
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Equation (22) is modified as in Eq. (29) to take into account the range only observation.

Ci =



(x, y, ϕ) \

x = x (τ) = xi + zr · cos (τ)

y = y (τ) = yi + zr · sin (τ)

ϕ = ϕ (τ) = τ

τ ∈ [0, 2π)



(29)

C. Selection of a reduced local map

In most practical cases the local map is very large when compared to the sensor

field of view. Most of the landmarks are usually beyond the range of the sensor. It is

then possible to select only the visible beacons from the entire map by considering the

estimated uncertainties. This will significantly reduce the computation complexity for

the evaluation of equation (13). The boundaries of the reduced map are fixed based on

the beacons that are close to the vehicle location, the particles position, the observation

and their respective uncertainty. Figure 3 shows this approach for the case of only

two particles. In this Figure (Ri, βi) are the observations, the ” ∗ ” are the projected

observation from each particle and the encircled stars are the beacons. It can be noted

from the Figure that only a few beacons are within the field of view of any of the particles.

The other beacons are not considered to be part of the reduced map.

D. Interface with the CEKF

Two main issues need to be addressed to implement the switching strategy between

the CEKF and the SIR filter. The first problem involves the detection of a potential

data association failure while running the CEKF. This is implemented in this work by

monitoring the estimated error in vehicle and local map states and the results of the

standard data association process. The second issue is the reliable determination that
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Fig. 3. Selected beacons in a reduced local map

the particle filter has resolved the multi-hypothesis problem and is ready to send the

correct position to the CEKF back propagating its results. This problem is addressed

by analyzing the evolution of the estimated standard deviations. The filter is assumed

to converge when the estimated standard deviation error becomes less than two times

the noise in the propagation error model for x, y and ϕ. The convergence of the filter is

guaranteed by the fact that the weights (eq. 5) are bounded above at any instant of time

[23]. These weights are obtained from the integral given in equation (13). This integral

is always different from zero since it is calculated over a distribution that is zero only at

±∞ making the weights to be bounded by 1.

V. Experimental Results

This section presents experimental results obtained using the hybrid architecture in

the outdoor environment shown in Figure 4. The environment is populated by trees that

are used as the most relevant features to build a navigation map [24]. Full details of the

vehicle and sensor model used for this experiment are available in [25].

The CEKF filter is used to navigate when no potential data association faults are

detected. When a data association failure is detected the particle filter is initialized

according to the procedure presented in section IV-B and is run until convergence is
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Fig. 4. Experimental run in an outdoor environment

reached. At this point the filter reports the corrections to the CEKF that continue the

SLAM process using EKF based methods.

The algorithms were tested in an environment with areas of different feature density

as shown in Figure 5. In this experiment we logged GPS, laser and dead reckoning

information. The GPS used is capable of providing position information with 2 cm

accuracy. This information is only available in relatively open areas and is shown in

Figure 5 with a thick line. The vehicle started at the point labeled ”Starting Position”

and the filter used GPS, laser and dead reckoning to perform SLAM [24] until it reached

the location at coordinates -30,60 where GPS is no longer available. The SLAM remained

operating using Laser and dead-reckoning information only. High accuracy GPS was

again available close to the end of the run and will be essential to demonstrate the

consistency and performance of the hybrid navigation architecture proposed.

The stars and encircled stars in Figure 5 represent the natural features incorporated

into the map and the selected landmarks whose deviations are shown in Figure 6 re-

spectively. A diamond and a square represent the starting and ending position resulting

from the particle filter correction and are clearly shown in Figure 7. The beacons that

produce the association failure are the squared stars marked as C in the figure.

Figure 8 presents the vehicle position estimated error. It can be seen that the error
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in figure 5
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of the particle filter correction. The dots represents the RTK GPS information.

was very small when the system was operating with GPS, time < 200sec. It is then

maintained below 0.5 m while in the area with high feature density. The error then

started to increase before reaching point ”A” since the laser cannot detect any known

feature. At this time ( 320 sec) a new feature was incorporated but with large uncertainty

as shown in Figure 6. Then a known landmark was detected and since it can be associated

correctly, the error in vehicle and landmark position dramatically decreased as expected.

A different situation is presented in Figure 7 that corresponds to the area marked as

zoomed area in Figure 5. Once the laser stoped seeing the previous known landmarks

the error built up again to the point where the system can no longer associate the

detected landmarks to a single known landmark. The location of the vehicle at this time

is represented as a diamond at coordinates (45,45) in this figure. In this case the system

has to activate the Monte Carlo localiser to generate the relocalization results shown as

a square at coordinates (47,45) in the same figure.
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Examples of the Monte Carlo filter initialisation are shown in Figures 9 and 10. Figure 9

shows the initialization for the range and bearing case. The figure clearly shows the helical

shape of the initial distributions. The arrows represent the position and orientation of

the vehicle and the stars the beacons present in the map. The initialization for the case

of bearing only is also shown in Figure 10.

The relocalisation result is then reported to the CEKF to continue with the SLAM

process for the rest of the run. At the end of the trajectory high accuracy GPS was again

available (thick line). It can be clearly seen, specially in Figure 7, that the estimated

vehicle pose just before GPS became available is very close to the high accuracy GPS

reported position. This demonstrates the performance and consistency of the hybrid

architecture proposed.

It is also interesting to test the algorithm in the case where the available information

is not enough to select the correct hypothesis in a single scan. This is the case of using

bearing only sensors. Figure 11 presents the average position of the vehicle across a Monte

Carlo simulation consisting of 50 runs as a full line. The dotted line is the differential

GPS position taken as a reference to verify the operation of the filter. Although the

vehicle started at 0,0 the mean is not representative of the most probable position of

the car during the initial part of the trajectory due to the multi-modal nature of the

distribution during this period. Figure 12 shows the standard deviations of the states x

and y of the vehicle averaged over the fifty runs. It is important to note that although the

environment can be crowded with landmarks and other spurious objects the algorithm

remains robust since no data association is performed at this stage. The convergence for

the bearing only case is slower than the range and bearing case but it is still achieved

in a few scans. The convergence time will depend on the number of features in the

environment.
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Fig. 9. Initialization of the particle filter using range and bearing information
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VI. Conclusions

This paper presented a hybrid architecture that makes use of the Compressed Extended

Kalman Filter (CEKF) algorithm to perform SLAM in an efficient form and a Monte

Carlo type filter to resolve the data association problem that is normally present when

the vehicle closes a large loop. The experimental results have shown that this approach

can be used to increase the integrity of EKF based systems by providing the capability

to temporarily handle multi-mode probability distributions.

Three factors affect the computational requirements and convergence of the algorithm.

The initialization, the number of particles and the number of beacons that can be mea-

sured in a laser scan.

It was shown that a good initialization is essential to assure the convergence of the al-

gorithm with a given number of particles. In the runs performed using range and bearing

information the filter resolved the multi-hypothesis in only one laser scan. This result

can be extrapolated to the case of bearing only information and range only information.

The results with bearing only and range only sensors are relevant since there is a wide

variety of inexpensive sensors that can be used to aid navigation systems to recover when
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closing large loops. Research in under way to address the other two issues.
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