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Abstract

This paper addresses the problem of autonomous navigation in very large unstructured environments. A new Hybrid Metric Map
(HYMM) structure is presented that combines feature maps with other metric representation in a consistent manner. The global feature
map is partitioned into a set of connected Local Triangular Regions (LTRs), which provided a reference for a detailed multi-dimensional
description of the environment. The HYMM framework permits the combination of efficient feature-based SLAM algorithms for localisation
with, for example, occupancy grid maps for tasks such as obstacle avoidance, path planning or data association. This fusion of feature
and grid maps has several complementary properties; for example, grid maps can assist data association and can facilitate the extraction
and incorporation of new landmarks as they become identified from multiple vantage points. This paper also presents a path planning
technique that efficiently maintains the estimated cost of traversing each LTR. The consistency of the SLAM algorithm is investigated with
the introduction of exploration techniques to guarantee a certain measure of performance for the estimation process. Experimental results in
outdoor environments are presented to demonstrate the performance of the algorithms proposed.

I. Introduction

The last few years have seen the implementation of autonomous systems in industrial applications that operate in
a reliable and consistent manner in areas such as stevedoring [1], mining [2] and agriculture [3]. These systems make
use of absolute information such as GPS or maps of the environment to solve the localisation problem. More complex
applications have been presented solving the localisation and mapping problem simultaneously. This problem is usually
referred to as Simultaneous Localisation and Mapping (SLAM) [4] or Concurrent Mapping and Localisation (CML)
[5]. Most real time implementations of SLAM are based on Kalman Filters extended with appropriate models for the
vehicle and sensors to solve the SLAM problem [4]. In [6] the real time implementation aspects of SLAM using EKF
techniques were addressed. A Compressed Extended Kalman Filter (CEKF) algorithm was introduced that significantly
reduces the computational requirement without introducing any penalties in the accuracy of the results. Sub-optimal
approaches were also presented in [7][8] to update the full covariance matrix of the states bounding the computational
cost and memory requirements. There are also other approaches that make use of a combination of particle filters and
Kalman filters to represent the pose of the vehicle and location of the landmarks respectively [9]. In this case the map
building and localisation processes are decoupled by assuming that the pose of the vehicle is known. This is achieved
with a sufficient number of particles to represent the distribution of the true pose of the vehicle at all times.

One of the biggest challenges in robotics is navigation in large unstructured environments. In particular, high integrity
autonomous navigation presents a large number of unsolved problems in the area of perception, localisation, mapping
and control [10]. SLAM algorithms are based on exploration and revisiting stages to maintain consistent global maps.
Depending on the quality of the kinematics models and external sensors, the exploration stage can be extended to larger
areas. Nevertheless no matter how good sensors and models are, at one point the accumulated errors will make the
SLAM process prone to catastrophic faults due to failures of the data association process or due to strong non-linearities
present when working with large uncertainties. We consider that the key areas that need to be addressed to achieve
high integrity autonomous systems are:
• Map Representation: One of the most important challenges when working with very large environments is map
representation. Map representation is the process of constructing an internal representation of the world from real-time
sensory information. An optimal representation of the environments in unstructured dynamic worlds is one of the
outstanding and significant research challenges in building intelligent systems.
• Consistency: A second important problem is related to the consistency of the robot localisation and map building
process. In general large environments can be prone to large uncertainties in estimates making linearisations not
appropriate for standard filtering processes. In this case the filter will usually generate over-confident non-consistent
results.
• Data Association: In every estimation problem, the measurements need to be associated with the underlying states that
are being observed. This is usually referred to as the data association process and is one of the most difficult problems
in localisation or SLAM applications. Successful data association involves association of the correct measurement with
the correct state and initialising new tracks and detecting and rejecting spurious measurements [11] . There are different
ways to implement the data association process [12]. The most widely used algorithm for data association is the
Nearest Neighbour (NN) where each observation is tested against each hypothesis. When multiple observations are
jointly processed a more robust data association can be obtained. This joint data association intrinsically considers the
geometric relationship between a set of landmarks [13–15].
This paper will address these three fundamental navigation issues. It presents a new Hybrid Metric Map (HYMM)
representation that combines feature maps with any other metric representation. In particular it includes a combination
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of features / occupancy grid approaches to achieve efficient global localisation with features and allows detailed navigation
in local areas by making use of OG maps. In this paper detailed navigation refers to the capabilities of an autonomous
system to perform tasks such as path planning, obstacle avoidance, etc. The aspect of consistency is also addressed
presenting new efficient algorithms to evaluate the information available in different regions of the map. This will make
possible to design and plan trajectories to maintain a robot with a position uncertainty bounded, avoiding therefore
inconsistent estimates. Finally the data association problem is addressed with a hybrid architecture that combines
CEKF with Particle Filter methods.

The paper is organised as follows; Section II presents a brief summary of different map representations. Section
III introduces the Hybrid Metric Map (HYMM) representation. Section IV addresses the aspect of map consistency
presenting new measures of information and efficient algorithms for real time implementation. The aspect of data
association in a complex environment is presented in Section V. Finally Section VI presents experimental results in
outdoor environments and conclusions are given in Section VII.

II. Autonomous Mapping

Autonomous mapping is the process responsible for obtaining an internal representation of the environment from
external information. The mobile robot uses a wide variety of sensors to obtain information about the environment.
However, the sensors are not perfect and the information provided is usually perturbed by some type of noise. One of
the key problems in mapping is to model and incorporate this uncertainty into the map. Many autonomous applications
can only rely on observations of the world taken relative to the pose of the rover. The error in the robot pose estimation
will introduce another source of uncertainty. Probabilistic techniques have been widely used in mapping problems since
they can incorporate and propagate sensor and vehicle model errors into the rest of the system.
The next subsections present a brief review of the most common mapping techniques used in localisation and SLAM:
occupancy grids, feature based maps and topological maps.

A. Occupancy Grid Maps

The occupancy grid mapping technique (OG) represents the environment with a grid of fixed resolution. The OG is
a multidimensional grid that maintains stochastic estimates of the occupancy state of each cell. The OG maps were
introduced by Elfes and Moravec [16, 17] and have been widely used due to the simplicity of their implementation. Each
cell stores the probability of being occupied or free. The state variable S(Ci) associated with the cell Ci is defined as
a binary random variable where Prob(Ci = OCC) + Prob(Ci = FREE) = 1 since the cell states are exclusive. The
evaluation of the posterior over the occupancy of each grid cell (1) is based on binary Bayes filters:

Prob(Ci = OCC|xk, Zk) ∝ Prob(zk|Ci = OCC)Prob(Ci = OCC|Zk−1) (1)

In practise the update is usually solved using Odds formulation [17]. One of the main problems with OG maps is
that they do not take into account the correlation between cells that exists due to the robot pose uncertainty. This
technique assumes that the states’ variables of each cell are independent, an assumption that is not true specially when
working in large areas where the robot pose can potentially accumulate significant errors. OG have been used mainly for
localisation given a priori map or for map building given the robot pose. More recently some SLAM formulations using
OG have started to appear [18]. However, as stated in [19] it is of fundamental importance to have a representation of
the robot pose and sensor uncertainty and their correlation to achieve convergence of the SLAM process. This is not
possible using OG techniques. One obvious case where OG based SLAM fails is when attempting to close a large loop.
In this case the actual pose of the robot will usually have a considerable error. Even in the case where it is possible to
associate the observations correctly with the global map to correct the error in the local map, it will not be possible to
propagate the corrections back through the rest of the map. This is due to the fact that OG approaches represent the
uncertainty in a local frame, but do not take into account the correlation between the local and the global frames. This
will result in an inconsistent global map. In general OG techniques provide very rich representations of the environment,
which will enable the robot to perform tasks such as path planning and reactive navigation in local areas but they cannot
provide consistent global map estimates when working in large environments.

B. Feature Maps

Feature map techniques [20] represent the environment with parametric features such as points, lines, cylinders,
corners, etc. A feature is a distinctive part of the environment that can be easily discriminated by a type of sensor and
described with a set of parameters. This method requires a model for each type of feature considered in the environment.
A comprehensive description of the SLAM problem using features was presented in a seminal paper in [21]. Although
only the location of the features is used to represent and maintain the map, other information such as geometry, color,
etc., can also be used in the identification stage or during the data association process. Real time implementations of
SLAM have been mostly based on the use of Extended Kalman Filters (EKF) [6, 22]. With this approach the state
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Fig. 1. Estimated path and features map obtained in Victoria Park.

vector containing the robot pose is augmented when new features are observed and validated. Since the features are
observed with respect to the robot position the estimated robot pose and map will be correlated due to the robot pose
uncertainty. At the limit, when many observations are incorporated, the map becomes fully correlated. This means that
a theoretically perfect map can be achieved if the absolute location and orientation of a feature is given. Figure 1 shows
a typical result of an estimated map and trajectory obtained using feature based SLAM in an outdoor environment.
In this experiment the most common relevant features were trees. The profile of the trees was extracted from a laser
sensor, and the most likely trunk centres were estimated. A Kalman filter was implemented to reduce errors due to the
different profiles obtained when observing the trunk of the trees from different locations. These methods can also be
augmented with absolute information as presented in [6]. More detailed information on the experiment and the complete
experimental dataset is available in [23].

Feature maps are suitable in applications where it is possible to distinguish geometric features from the environment.
This characteristic makes feature map techniques not useful in highly unstructured environments where it is not always
possible to find clearly distinct geometries. Moreover, the map obtained could be a sparse representation of the environ-
ment, which in most cases will be of limited resolution and will not be able to provide information to perform detailed
navigation.

C. Topological Maps

Topological approaches [24] represent the robot environment by using graphs. With metric approaches such as feature
maps or occupancy grids, the objects’ locations are defined in a cartesian coordinates frame. With topological maps
the environment is represented by nodes and arcs that correspond to possible travel paths. Each node represents a
distinctive place in the environment, and the edges represent the relative position between adjacent nodes. With pure
topological maps it is only necessary to represent the connectivity between nodes and no information about the absolute
position of the nodes is required. Figure 2 shows an example of a topological map. Topological maps are attractive for
the compactness of the representation. They are efficient representations for tasks like path planning and are appealing
in indoor applications where clear distinctive places can be found between areas where navigation can be performed
aided by very basic information such as wall following. One of the main problems with this representation in more
complex environments is place recognition. If the robot travels between two places that look alike, the lack of metric
information makes the discrimination of these two places very unreliable. In this case the logic of the topological map
will be broken and the robot will not be able to evaluate its position. This is probably the main reason why most of the
approaches use metric information over topological maps in large unstructured environments [14, 24]. Finally another
limitation of this technique is that it does force the planner to follow specific trajectories to pass through or very near
distinctive places.
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Fig. 2. Typical topological map, the ‘*’ are the distinctive places and ‘-’ the path between the distinctive places.

D. Hybrid Maps

In the past few years various studies presented implementations of maps combining different approaches [25]. These
studies range from integrating topological with metric maps [14, 26–28] to the use of multi-resolution OG approaches
[18]. In [14] and [28], the authors introduce a hybrid approach that uses topological and feature maps to perform
large-scale SLAM. This method scales very well to large environments using feature maps only. In [18] a localisation
procedure using correlation techniques to register real time local OG maps with the existing global map is presented.
Extensions to SLAM are also presented incorporating new features with a method based on sequential localisation and
posterior map building. Unfortunately this method generates inconsistent results when operating in large areas since
it has already been proved that these two tasks have to be performed simultaneously to guarantee consistency in the
results.

The next section presents a new mapping framework called Hybrid Metric Maps (HYMM), that combines feature
maps with other metric representation in a consistent manner.

III. Hybrid Metric Maps (HYMM) Overview

The HYMM approach combines feature maps with other metric representation. This approach allows the robot to
obtain a very rich and accurate representation of the environment and at the same time localise itself (SLAM). Having
a rich representation of the environment will enable the robot to perform precise path control and more demanding
tasks such as obstacle avoidance. Moreover the HYMM representation presents significant advantages to solve the data
association problem in a very robust manner using for example, point data correlation techniques [29].
When working with feature based maps, a set of features can be used to partition the region covered by the map. These
partitions are shown in Figure 3 and consist of a set of connected local triangular regions (LTRs). Each LTR is defined
by the position of three landmarks called vertex as shown in Figure 4. Any point that belongs to a LTR can be defined
by a convex linear combination of the three vertex points associated with this sub-region. In Figure 4 a LTR Ωi is defined
by the vertex points {Li,1, Li,2, Li,3}. A local coordinate frame is defined based on the three vertex points according to
Equation (2).

−→ai = Li,2 − Li,1 = (ax, ay)−→
bi = Li,3 − Li,1 = (bx, by)

(2)

Any point that belongs to Ωi can be expressed as:

X = Li,1 + α · −→ai + β · −→bi =
= (1 − α − β) · Li,1 + α · Li,2 + β · Li,3

α > 0, β > 0
α + β ≤ 1

∀ X \ X ∈ Ωi

(3)
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Fig. 3. Landmarks map (‘*’) and a particular partition on triangular sub-regions (LTRs). As can be seen, not all the landmarks are needed
as vertex points in the LTRs definition.
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Fig. 4. Detail of an individual LTR defined by three vertex points, {Li,1, Li,2, Li,3} and the direction vectors, {ai, bi}.

Furthermore any generic function z of the global position X can be locally defined as a function of the local representation
of X.

z = f(X) = f(Li,1 + α · −→ai + β · −→bi ) = g(α, β) (4)

In some applications a function can be defined locally by an observer that has its position well defined with respect
to the vertices of the related LTR. This means that the position uncertainty of the observer will be low since it is
expressed with respect to a local frame. Then any information gathered from this location and associated with position
can be accurately represented in the local frame. Due to the structure of the map, the vertex points and any interior
point of the LTR are highly correlated. Then high uncertainty in the vertex points will not affect the quality of any
property defined as a function of the observer position (local). This is true if the observer measures certain property
z of points that are inside the LTR and is well localised with respect to the vertex points of this LTR. The property
z is expressed as a function g(α, β), where (α, β) are the local coordinates. Any improvement in the estimation of the
position of the vertex points will imply an improvement of z expressed in a global coordinate frame. If the position
of the vertex points is exact (in respect to the global frame) then a linear coordinate transformation will provide the
conversion from the local representation g(α, β) to the global frame version f(X). A typical application of this concept
is when a robot is concurrently doing SLAM and measuring a property z. The property z does not necessarily have to be
used for the robot localisation process. Assume a vehicle simultaneously doing SLAM and measuring three properties:
soil salinity, humidity and terrain occupancy. These properties can be locally represented in each LTR using occupancy
grid techniques. Figure 5 illustrates one example of different internal properties in a given LTR.

In some cases, due to the high correlation between the vertex points and the vehicle pose states, it will be possible to
represent a particular property as a deterministic function of the local coordinates (α, β) inside the LTR. In addition one
of the properties (e.g. terrain occupancy) could be used for example to assist the data association stage of the SLAM
process.

If a set of observed objects are geographically close from the vehicle viewpoint, then the error due to the vehicle
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Fig. 5. A set of properties can be defined as a function of the local coordinate variables. The triangular LTR’s shape can be seen on the
plane xy (dashed lines).
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Fig. 6. Effect of moving the base landmarks position. (a) Over a grid. ‘*’ before the update and ‘square’ grid after the update (b) In a
curve.

pose uncertainty will be a common component of these estimated landmark positions. This occurs in SLAM where the
vehicle accumulates uncertainty in its estimated position and incorporates observations that are used to synthesise a
map. Due to this fact the estimates of landmarks that are geographically close will present similar uncertainties and
high cross-correlations. Any update in a particular landmark will imply a similar update on any landmark sufficiently
close to the first one.
The local representation defined in (3) takes advantages of this particular fact. It can be seen that

X → Li,1 ⇒ α → 0, β → 0, (1 − α − β) → 1
X → Li,2 ⇒ α → 1, β → 0, (1 − α − β) → 0
X → Li,3 ⇒ α → 0, β → 1, (1 − α − β) → 0

(5)

This means that if a relative estimated point X, is close to Li,1 and the estimation process generates changes in the
base landmarks Li,2, Li,3 but no change is introduced in Li,1 then a very small change will be made over the estimate
of X. This can be seen by analysing the variation of an internal point X when there is a change in the LTR landmarks
position.

δX = (1 − α − β) · δLi,1 + α · δLi,2 + β · δLi,3 = α · δLi,2 + β · δLi,3 (6)

From (6) it can be seen that δX → 0 when delta δLi,1 = 0 and α = β = 0. Figure 6 shows the effects of changing the
position of the base landmarks in a LTR. In (a) the concept is illustrated in a grid, and in (b) in a curve. It is evident
from Figure 6 that there will be small changes in the points close to the landmarks that have a small update, and large
changes in the points close to the landmarks that have a significant update. The next subsections present some of the
most important points of the HYMM approach.
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Fig. 7. 2D LTRs definition based on 3D landmarks. The LTRs define a continuous piece-wise linear 2D surface in the 3D space. A more
detailed and precise description can be obtained for each LTR by using its local 2D coordinate frame.

A. 3D Extension

The HYMM can also be applied to represent 3D maps. The 2D triangular LTRs can be extended to 3D tetrahedral
LTRs including an additional vertex point. The vectors to define the local frame are now three:

−→ai = Li,2 − Li,1−→
bi = Li,3 − Li,1−→ci = Li,4 − Li,1

(7)

and any point that belongs to Ωi can be expressed as:

X = Li,1 + α · −→ai + β · −→bi + γ · −→ci

α > 0, β > 0, γ > 0
α + β + γ ≤ 1

∀ X \ X ∈ Ωi

(8)

Another useful representation can be obtained based on 2D LTRs and defining the vertex points in a 3D space. As
shown in Figure 7 the LTRs can have different inclinations and are not necessarily horizontal or contained in the same
flat surface. This representation allows, for example, the use of a piece-wise linear frame for terrain surfaces based on
features. Over the defined LTRs a more detailed local description can be obtained as a function of the local coordinate
variables (α, β). For example a function representing the level of the terrain surface in respect to the triangular flat LTR
(perpendicular to it) can give useful information about the terrain traversability of certain area.

B. HYMM using Occupancy Grids

As mentioned before, the occupancy grid technique requires accurate determination of the robot’s pose. However, in
real applications the robot’s pose is always known with some uncertainty. Previous hybrid maps using OG neglected
this uncertainty and therefore they generate inconsistent results when applied to large environments. The approach
presented here uses the features included in the stochastic map to define the triangular boundaries of a grid map. By
using a feature based representation it is possible to estimate the vehicle position simultaneously with the map, however
the map obtained is a sparse representation of the environment. Augmenting the map with the OG representation
provides additional information to perform detailed navigation while at the same time obtaining a consistent and rich
representation of the environment.
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Fig. 8. A relevant property is the occupancy description in the LTRs. The doors of a particular LTR can be defined by the clear (empty)
segments on its borders.(a) 2D plot, (b) 3D plot.

The HYMM representation can combine feature based maps with other local metric representation, in particular with
OG maps. The approach uses the best of both worlds, the consistency of the feature maps, that will enable the robot
to localise itself and the rich representation that is only possible with OG maps to perform detailed navigation.

C. High Level Features

In many situations an object cannot be initialised using the measurements taken from only one vantage point. This
can be due to a variety of reasons: occlusion between objects, the size of the object in relation to the sensor field of view,
an inappropriate feature model or just because the nature of the sensor makes the estimation of the feature location
from only one location impossible (e.g wide-beam sonar) [30, 31]. Estimating partially observable features has been an
important research topic in computer vision using stereo vision and bearing only information, where the initialisation
of the features position is a significant problem. The problem of partially observable features has also been studied
for localisation and SLAM applications. In [30] an approach is presented that delays the decision to incorporate the
observations as map features. Consistent estimation is achieved by adding the past vehicle positions to the state vector
and combining the observations from multiple points of view until there is enough information to validate a feature.
In [31] intersection of range of constant depth of ultrasonic sensors is used to determine the location of features from
multiple vantage points.
Having a comprehensive representation of the environment will enable a delayed-processing to determine whether part
of the map can qualify as a feature. Using the HYMM approach, in particular combining features and OG, will enable
post-processing capabilities to continuously detect High Level Features in the OG maps. The newly detected features
can then be added to the features map. This approach has the potential of incorporating a large number of feature
models, some of them to be applied on-line at the time the observations are taken and the rest to run in background with
the OG when computer resources become available. The landmarks can then be incorporated in a consistent manner
into the features map.

D. Submaps Compression

Computational storage can become an important problem in mapping when working in very large and dense environ-
ments. This is also true even with feature based maps. The HYMM approach will also be prone to memory problems
in large environments. However, a compression technique can be applied to reduce the amount of memory required.
When the robot is travelling, only the active regions are needed and the rest can be compressed. The active regions can
be defined as the regions that are visible to the robot sensors and the neighbourhood. For example, in the case of the
HYMM implemented with a combination of features and OG, the compression can be done saving only the cells with
occupancy probability bigger than a given threshold. All the other cells could be approximated as free space. A further
simplification is by using a more efficient OG representation such as Quadtrees or Oct-trees [32].

E. Path Planning using LTRs’ partition

Due to the nature of the representation a high accurate map can be obtained inside a LTR independently of its
absolute location. If a set of properties, useful for navigation and path planning purposes, are locally described in each
LTR then the set of LTRs that define the whole map will have all the necessary information required to deploy a global
path planning strategy. The properties describing the occupancy in each LTR are essential for path planning purposes.
An example of a list of properties can be:
1. Occupancy.
2. Probability of presence of humans, animals or other moving objects (traffic density). It can be a function of the
time/date, weather, etc.
3. Terrain surface type (concrete, soil, sand, water).
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4. Terrain surface shape.
Each LTR defines a set of doors that link the LTR with its exterior. The doors are on the borders of each LTR, as in
Figure 8 and indexed in a list of doors for the LTRs, e.g. Ωi : {Di,1,Di,2, .....,Di,ni

}. A function describing the cost
of moving from one door to another can be defined based on local properties (e.g. properties 1,2,3,4 above). Then a
square matrix representing the cost of moving between doors can be defined.

Ci ∈ Rni·ni

Ci(j, k) = minξ(
∫

ξ
µ(α, β) · |dlX |)

ξ \ ∃ γ1, γ2,
γ1 ∈ ξ , γ2 ∈ ξ , γ1 ∈ Di,j , γ2 ∈ Di,k , ξ ⊆ Ωi

(9)

where Ci(j, k) represents the minimum cost to go from door Di,j to door Di,k. The costs are calculated as line integrals
of the cost function µ(α, β) along any possible (local) curve ξ that connects the couple of doors Di,j and Di,k. The cost
function µ(α, β) is a combination of the individual cost functions where each individual cost function µs(α, β) focuses
on a property as in 1, 2, 3, 4:

µ(α, β) = F ({µs(α, β)}S
s=1) (10)

for instance

µ(α, β) =
∑4

s=1 ks · µs(α, β) (11)

The differential of arc dlX is defined with respect to the global frame. The line integrals are evaluated in the local frames
and scaled to be consistent with the travelled distances in space X. It is noteworthy that in general the cost matrix
will not be symmetric, that is Ci(j, k) 	= Ci(k, j). This means that the cost of moving from j to k could be different to
the cost of moving from k to j. This could be the case for example, of having the robot moving in a hilly terrain and
considering this property of the terrain in the cost matrix. A global path planner can solve an optimisation problem
based on the set of cost matrices {Ci} considering the connectivity between LTRs. The connectivity matrix indicates
whether a LTR shares a border with another LTR. Additionally when two LTRs are adjacent (sharing a common segment
for both triangular regions) then they share the doors that belong to the shared side. The basic objective of the global
path planner will be to obtain the sequence of doors that allows the vehicle to move from one point to another with the
lowest overall cost. This is a discrete optimisation problem. As will be demonstrated later in this paper the cost matrix
of a LTR will remain constant if the local properties, shape and size of the LTRs do not change.
Path planning involves designing a path to go from one point to another. Since the initial position is inside a LTR then
the costs to go from this point to any LTR door is calculated and this point is considered as an additional door for the
LTR. The same applies to the destination point. Then the optimum sequence of doors that connect the initial and final
points defines the optimum path. This path is defined by the optimum sequence of doors and the optimum internal
paths that connect each couple of doors of the same LTR. The internal paths are predefined during the evaluation of Ci.

E.1 Evaluation of uncertainty in the LTR definition

Changes in the position and orientation of a LTR Ωi do not affect the result of the line integrals on that LTR. A direct
consequence of this fact is that the cost matrix Ci does not change either. This is due to the fact that the integrals are
evaluated with respect to functions that are locally defined and that the norm− 2 of the differential of arc in the global
frame, |dlX |, does not change with rotation and translations of the local frame. This is not true if the LTR changes its
shape or size since the differential of arc will change its scale in this case.
If the uncertainty in the estimated positions of the vertex points of a LTR Ωi implies a translational or rotational
uncertainty of the defined triangle then it does not affect the cost matrix Ci. In a SLAM process a set of close
landmarks are usually strongly correlated. This correlation is in general due to high uncertainty in their position and
orientations. On the other hand, their relative positions are well defined. It means that three close landmarks will define
a triangular region with well defined shape and size. Nevertheless their global estimated position and orientation can
be highly uncertain. As a consequence of this, during a SLAM process the defined LTRs will usually have large changes
in their positions and orientation but minor changes in their shapes and sizes since the relative position and orientation
are very accurate. Due to this remarkable fact, the cost matrices {Ci} do not need to be continuously updated as the
SLAM process evolves. LTRs that are far away from the vehicle can have updates in their position and orientation but
will have almost no change in shape and size. Uncertainty in the shape and size of a LTR produces uncertainty in the
definition of the magnitude of the line differential. The line differential is perfectly defined in the local space (α, β) but
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its equivalent in the global space X is not. This uncertainty can be estimated and bounded. Any curve that is defined
in the local space

ξ = { (α, β) / α = α(τ), β = β(τ), τ1 ≤ τ ≤ τ2} (12)

can be defined in the global coordinate system by using the transformation defined in Equation (8)

x = L1,x + ax · α + bx · β
y = L1,y + ay · α + by · β (13)

Then

ξ = { (x, y) / x = x(α(τ), β(τ)), y = y(α(τ), β(τ)), τ1 ≤ τ ≤ τ2} (14)

The evaluation of the curve in the X space is not needed but its differential of arc must be considered in any line integral
over any trajectory.

|dlX | =
√

(dx/dτ)2 + (dy/dτ)2 · dτ

dx/dτ = ∂x/∂α · dα/dτ + ∂x/∂β · dβ/dτ = ax · dα/dτ + bx · dβ/dτ
dy/dτ = ∂y/∂α · dα/dτ + ∂y/∂β · dβ/dτ = ay · dα/dτ + by · dβ/dτ

(dx/dτ)2 + (dy/dτ)2 =
(dα/dτ)2 · (a2

x + a2
y) + (dβ/dτ)2 · (a2

y + a2
y) + dα/dτ · dβ/dτ · (ax · ay + bx · by)

(15)

The scale factors (a2
x + a2

y),(b2
x + b2

y) and (ax · ay + bx · by) are invariant with respect to translation or rotation of
the set of vertex points {L1, L2, L3} that define a LTR. If the triangle’s shape and size, defined by the vertex points,
are perfectly known then the scale factors are also perfectly known. If there is uncertainty it can be bounded with the
worst case bounds, defined as the highest possible increase in any of the scale factors. Any line integral defined in a
LTR will consider this conservative scale factor. It means that any LTR with shapes not well defined will be penalised
according to the degree of uncertainty that it produces on the cost calculation (i.e. on the integral evaluation). The
possible distortion of the line differential can be easily bounded.

K = max(|−→a +
−→
δa|/|−→a |, |−→b +

−→
δb|/|−→b |, |−→c +

−→
δc|/|−→c |)

−→a = L2 − L1−→
b = L3 − L1−→c = L3 − L2

(16)

where
−→
δa,

−→
δb and

−→
δc are bounded by considering the covariance of the vertex points. Other bound can be:

K = 1 + max( δ‖−→a ‖2

‖−→a ‖2
, δ‖−→b ‖2

‖−→b ‖2
, δ‖−→c ‖2

‖−→c ‖2
) (17)

The standard deviations of the norms of −→a ,
−→
b ,−→c are easily calculated. For instance the standard deviation of ‖−→a ‖2 is

calculated from

−→a = L2 − L1 =
(
ax ay

)T

⇓
P−→a = H · PL1,L2 · HT

H =
(−1 0 1 0

0 −1 0 1

)

‖−→a ‖2 =
√

a2
x + a2

y

⇓
P‖−→a ‖2

= H2 · P−→a · HT
2

H2 = ∂‖−→a ‖2/∂(ax, ay) =
(
ax/‖−→a ‖2 ay/‖−→a ‖2

)

δ‖−→a ‖2 =
√

P‖−→a ‖2

(18)
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where L1, L2 are the vertex points (landmarks) that define the vector −→a , PL1,L2 is their covariance matrix, P−→a the
covariance matrix of the vector −→a , P‖−→a ‖2

the covariance of the norm of this vector and δ‖−→a ‖2 is its standard deviation.

Similar analysis can be performed with vectors
−→
b and −→c . The associated constant K is obtained from Equations (16)

and (18).
The result of the cost integrals for the LTR must be multiplied by this constant to penalise the uncertainty in the shape
and size of the LTR. This bounding factor is then common for any line integral evaluated inside that LTR and can be
directly applied by multiplying the cost matrix associated to that the LTR. Then the penalisation factor is applied to
recalculate the matrix Ci accordingly to:

C∗
i ∈ Rni·ni

Ci(j, k)∗ = Ki · Ci(j, k)

C∗
i = Ki · Ci

(19)

where Ki is the penalisation constant for this particular LTR.
The uncertainty in the orientation and position of a LTR does not affect its shape and size and consequently does not
affect the scale factors. This fact reinforces the concept that if the correlation between the vertex landmarks is strong
then the LTR representation is close to the optimal approach.

IV. Information Map (IM)

Any autonomous system designed to work in large unknown environments will need to perform navigation and mapping
in a robust manner. This will require to guarantee that the information available while performing a task is sufficient
to maintain robot localisation errors bounded and map consistency. This section presents the Information Map (IM),
an algorithm to evaluate the potential information that can be incorporated by the robot when committed to a certain
trajectory. The IM function represents the amount of information that can be obtained from any point of the vehicle
pose states space based on a given navigation map. The navigation map is expressed as a probability distribution and
can be a given map or the temporary map being built with a SLAM process. In SLAM, this probability distribution is
constantly changing and as a consequence, the map information will also change. The IM is a vital component of any
overall utility function used to define the vehicle trajectory. For various important reasons it is relevant to maintain
limits over the uncertainty of the vehicle pose estimates. One of them is to guarantee the consistency of the localisation
algorithm itself. It is well known that large errors in the vehicle pose estimate can violate some assumptions in an EKF
SLAM process (involving non-linear effects, numerical instability problems, etc.). Problems also arise with particle filter
based SLAM [9], where large errors introduce the need for a very large number of particles, making the implementation
infeasible for real time purposes.
The maintenance of an IM is relevant when a navigation/exploration strategy is implemented. Since the maintenance
of an IM over time can be a computationally expensive procedure then efficient update techniques become essential for
real time applications.
In a SLAM process the evaluation of the IM can be implemented concurrently with the map estimation process. Although
the IM changes with the incorporation of each observation, it is not practically necessary to update at this rate. The
IM gives a scalar representation of the amount of information that a localiser can potentially obtain from the current
estimated map in each location. This function presents discontinuities since every practical sensor will have a finite
range, for example a landmark that is seen from a point xi and cannot be seen from xi + dx, dx → 0.
For a given map probability distribution, an information map can be obtained and expressed as a function of the states
G representing the vehicle pose X,

i(X) = G(X,P (M)), (20)

where P (M) is the map probability distribution.
If the map probability distribution changes with time then the information function can be expressed as a function of
the vehicle pose X and time k.

i(X, k) = G(X,P (M,k)), (21)

where P (M,k) is the estimated (available) map probability distribution at time k. Although this is very valuable infor-
mation it is at the same time extremely expensive to maintain.
For most practical purposes the planner will not necessarily require an analytical function to represent the IM but it will
benefit from having a map of areas with known information. That is a set of level sets of i(X, k) each representing areas
of at least a given information quality. Furthermore, some applications may only require a single level set of i(X, k).
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A level set is defined as:

Ω(β, k) = {X\i(X, k) ≥ β} (22)

This level set represents all the points in the space of the vehicle pose variable X where it is possible to obtain at least
an amount of information β. The argument k is included since the map probability distribution corresponds to time k.
The level sets have some interesting properties. Some of them are mentioned now. First,

Ω(β1, k) = {X\i(X, k) ≥ β1}
Ω(β2, k) = {X\i(X, k) ≥ β2}

β1 ≤ β2 =⇒ Ω(β1, k) ⊇ Ω(β2, k)
(Ω(β1, k) ∩ Ω(β2, k) = Ω(β2, k))

(23)

It is clear from (23) that a level set will include any level set of higher information value.
The second interesting property is based on a proper definition of i(X, k) (as will be presented later) in which case it is
possible to guarantee the following:

Ω(β, k) = {X\i(X, k) ≥ β}
Ω(β, k + n) = {X\i(X, k + n) ≥ β}

n > 0 =⇒ Ω(β, k + n) ⊇ Ω(β, k)
(Ω(β, k + n) ∩ Ω(β, k) = Ω(β, k))

(24)

This equation means that any level set will increase (more exactly, never decrease) its volume in all directions of the
space X as the SLAM map improves its quality (see Section IV-D). If the map does not lose quality then the information
from any point of view cannot decrease.

Any exploration strategy must be based on an IM. The strategy can consider navigating inside regions defined by
a level set of the IM. For instance a useful level set is one that represents the regions where the vehicle will obtain a
minimum amount of information to guarantee the integrity of the localisation algorithm. Implementation of an efficient
geographical representation of a level set can be done using a Quadtree grid representation. This class of representation
can be adjusted to the desired resolution, particularly on the borders of the level set regions. The increase in the area of
a level set region after a SLAM update will manifest itself mostly in the borders of the previous level set region and will
create islands that will usually be unconnected with the previous level set. After several SLAM updates some islands
will be connected and eventually new islands will be created. Knowledge about the existence of these isolated islands
may not be relevant. If it is assumed that the vehicle cannot leave a particular connected region of a given level set then
it will be impossible for the vehicle to move to another island. Then the more important task is the maintenance and
update of the level set containing the current vehicle position. The consequences of this fact have a remarkable effect on
the real-time feasibility of this strategy. The search algorithm to find new level set regions will be concentrated on the
borders of the previous level set regions. Eventually other islands belonging to the level set definition will be appended
to the main component of the level set. This concept is illustrated in Figure 9. Initially the level set is defined by three
regions (1a, 1b, 1c). After a map improvement the new regions are (2a, 2b, 2c, 2d). It can be seen that region 2a contains
region 1a, 2b contains region 1b, 2c contains region 1c and a new island appears as 2d. After another map update, the
level set grows to (3a, 3c, 3d). The former region 2b is now included in 3a.

A. Detecting isolated level set islands

As was mentioned before, knowledge of the level set islands is not an important issue for practical applications.
However it can be relevant to consider these isolated regions for implementing exploration strategies. The exploration
policy can be aimed at connecting these islands to extend the potential high quality navigation areas. The level set
update strategy can consider investigating the existence of level set islands based on exploration points. From these
exploration points and based on the evaluation of i(X, k) and its derivatives it is possible to determine new level set
islands. Part of the followed trajectories will converge to local maximums of i(X, k) with lower values than the level
set value. Others will eventually find a point meeting the condition i(Xi, k) > ε, where ε is the level set value. Any
discovered point Xi that does not belong to the previously known level set will be a seed for the creation of a new level
set island. In fact this point will be considered as a “border” point by the recursive algorithm.
The policy for the distribution of exploration points can also consider placing an exploration point close to any landmark
that does not belong to the current level set.



13

Fig. 9. β-value level set in expansion over the time, Ω(β, k = 1), Ω(β, k = 2), Ω(β, k = 3). Two of the initial level set islands are connected
at time k = 3 when islands A and B form one island.

B. Computational Cost

As mentioned before the technique to update the level set does not involve the evaluation of i(X,P (M,k)) over the
entire region of possible vehicle states X. The incremental procedure is based on an exploration policy that starts the
search on the border points of the previous level set and eventually on a finite number of “exploration” points. It is
then possible to implement this technique very efficiently in real-time applications.
When more than one level set is maintained the exploration points for the update of one level set can be distributed
inside the level set related to a lower value.

C. Landmark Visibility

It is important to define the concept of “Visibility”. For a particular vehicle pose it is relevant to know which
landmarks can be seen using sensors with limited operational range. Initially visibility can be evaluated based on the
expected values of the landmarks’ positions, XM (k|k), the range of the sensors and the particular instance of the vehicle
pose. This visibility calculation is unrealistic since the real position of a landmark can be different from its estimated
expected value. The expected landmark position can be visible (in range) but the real position can be outside the sensor
range. A realistic visibility evaluation must consider the landmark individual covariance matrix. By considering the 1σ
or 2σ regions defined by the covariance matrix of the involved set of landmarks a more realistic estimation of the visible
objects can be obtained. An evaluation of the visibility will consider the worst case based on the mean and covariance
of the landmarks’ estimates. This represents the first step towards the definition of a i(X) with the property (24).

D. Variation of the information function

As the estimated map changes it is not possible to be confident that i(X, k) will increase its value for any X. Two
strategies are possible to guarantee an always increasing i(X, k). One is the definition of a conservative ic(X, k) that
considers the worst case and meets the condition i(X, k +1)− i(X, k) > 0, ∀X. A second strategy is by defining i(X, k)
as usual but neglecting the effect of the existence of some small regions where i(X, k + 1) − i(X, k) < 0. The second
option is not ideal but it is a practical approximation of the real case. By using any of the previous strategies the
function i(X, k) will always increase in value at any point X and the level set regions can then only grow. Then the
algorithm for the calculation of the new level set can consider the previous level set as an initial condition and the search
process can start in the borders of the previous level set.
Consider a SLAM landmark map having at time k a Gaussian representation with expected value and covariance esti-
mates XM (k|k) and PM (k|k) respectively. For a particular vehicle pose instance Xi, consider the set of all the landmarks
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L = {Lj} that can be seen by a finite range vehicle sensor. This classification is based on the expected value of the
landmarks’ positions and on their individual covariances, according to a realistic visibility evaluation, as in Section IV-C.
Based on the set of visible landmarks L, the “worst case” available information can be obtained. This analysis considers
the joint covariance matrix of all the landmarks in L. This information function will be more conservative than the
nominal one based on XM (k|k), PM (k|k) without any “worst case” consideration. The “worst case” i(X, k) is now a
more realistic function that represents the information of the map. A realistic information map function i(X, k) will
always meet the following condition:

i(X, k + n) − i(X, k) ≥ 0,
∀ X

∀ n ≥ 0
(25)

Equation (25) guarantees the validity of the rule (24)

E. Achievable Information

For a given map and for a proposed vehicle position it is possible to predict the set of observations that can be obtained
from such vehicle pose. Based on this set of hypothetical observations the achievable information is also estimated. The
observations can be expressed as an implicit function of the states and other random variables:

h(Xv,XL, η) =




h1(Xv,X1, η1)
...

hm(Xv,Xm, ηm)


 = 0

Xv =


x

y
ϕ


 , XL =




X1

...
Xm


 , η =




η1

...
ηm




(26)

where Xv are the vehicle states, XM the states of the reachable landmarks and η the predicted sensor measurements.
Each component hi(.) is associated with a particular landmark (states Xi) and its associated measurement is noted ηi.
For the 2D range/bearing localisation process the components hi(.) and the states are:

Xi =
(

xi

yi

)
, ηi =

(
ri

γi

)
(27)

hi(Xv,Xi, ηi) =
(

x + ri · cos(ϕ + γi − π/2) − xi

y + ri · sin(ϕ + γi − π/2) − yi

)
, (28)

where xi, yi are the centre of the ith observed landmark and ri, γi are the range and bearing measurements. A vehi-
cle with position Xv will observe the environment and obtain the following amount of information to estimate its position:

∆Y = HT
v · R−1 · Hv, (29)

where Hv is the observation matrix and R represents the sensor noise covariance matrix:

Hv = ∂h/∂Xv =




1 0 −r1 · sin(ϕ + γ1 − π/2)
0 1 +r1 · cos(ϕ + γ1 − π/2)
1 0 −r2 · sin(ϕ + γ2 − π/2)
0 1 +r2 · cos(ϕ + γ2 − π/2)
...

...
...

1 0 −rm · sin(ϕ + γm − π/2)
0 1 +rm · cos(ϕ + γm − π/2)




∈ R2m·3 (30)

The term

R = HL · PL · HT
L + Hη · Pη · HT

η ∈ R2m·2m (31)
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is obtained considering:

PL = E{(XL − XL) · (XL − XL)T } ∈ R2m·2m

Pη = E{(η − η) · (η − η)T } ∈ R2m·2m
(32)

where PL is the covariance matrix of the set of observed landmarks and Pη the covariance matrix of the measurements.
In this case the observations of different landmarks are assumed independent, then:

Pη =




Pη1 0 0 0
0 Pη2 0 0
...

...
...

...
0 0 0 Pηm


 ∈ R2m·2m

Pηi
=

(
δ2r 0
0 δ2γ

)
(33)

The Jacobians of the function h(.) with respect to the landmarks states and the measurements are:

HL = ∂h/∂XL = −I ∈ R2m·2m

Hη = ∂h/∂η =




Hη1 0 0 0
0 Hη2 0 0
...

...
...

...
0 0 0 Hηm


 ∈ R2m·2m

Hηi
=

(
ci −ri · si

si −ri · ci

)

ci = cos(ϕ + γi − π/2)
si = sin(ϕ + γi − π/2),

(34)

Hη · Pη · HT
η =




Mη1 0 0 0
0 Mη2 0 0
...

...
...

...
0 0 0 Mηm




Mηi
= Hηi

·
(

δ2r 0
0 δ2γ

)
· HT

ηi

(35)

V. Data Association

The HYMM provides the possibility of applying scan correlation techniques to solve the data association problem.
Occupancy grid maps use scan correlation to perform registration of the observations with the map [16]. When the robot
incorporates an observation it updates/builds a local grid map. The correlation between this local and the corresponding
section in the global map is a measure of the correspondence between both maps. The multi-hypothesis problem in the
data association process is not uncommon in complex and large environments, in particular when closing a large loop.
A detailed representation of the environment will in most cases avoid multiple-hypothesis problems. However a high
integrity autonomous system should provide mechanisms to resolve this situation in case they are present. The next
subsections present an approach for solving the multi-hypothesis problem using a hybrid architecture combining CEKF
(Compressed Extended Kalman Filter) [6] and particle filters [33].
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A. Compressed filter and the aiding of the SIR filter

The proposed architecture uses the CEKF under normal conditions to perform SLAM. At a certain time the system
may not be able to perform the association task due to large errors in the vehicle pose estimation. This is an indication
that the filter cannot continue working with a mono-modal probability density distribution. At this point, we have
the CEKF estimated mean and deviation of the states representing the vehicle pose and landmark positions. With the
actual map, a de-correlated map is built using a coordinate transform and the decorrelation procedures presented in
[7]. A particle filter uses this information to solve the position of the rover as a localisation problem. When the multi-
hypothesis are solved the CEKF is restarted with the back propagated states values. Then the CEKF resumes operation
until a new potential data association problem is detected. This section presents several important implementation
issues that need to be taken into account to maximise the performance of the proposed architecture.

A.1 Map for the particle filter

The SLAM algorithm builds a map while the vehicle explores a new area. The map states will be, in most cases,
highly correlated in a local area. In order to use the particle filter to solve the localisation problem a two dimensional
map probability density distribution needs to be synthesised from an originally strongly correlated n dimension map.
The decorrelation procedure is implemented in two steps. The map, originally represented in global coordinates is now
represented in a local frame defined by two estimated beacons that are highly correlated to all the local landmarks. The
other local landmarks are then referenced to this new base. This results in a covariance matrix of the form,

pm =




pm1 C12 · · · C1m

C21 pm2 · · · ...
...

. . . . . .
...

Cm1 · · · . . . pmm




(36)

where the cross-correlation components between states of different landmarks are usually weak, i.e. they meet the
condition Ci,j/

√
pmi

· pmj
<< 1. To de-correlate the map it is necessary to apply an additional step. A conservative

bound matrix for Equation (36) can be easily obtained increasing the diagonal components and deleting the cross-
correlation terms. This can be implemented as shown in Equation (37) where diag[·] represents the elements of a diagonal
matrix [7]. For presentation purposes, all the states in Equation (37) are assumed to belong to different landmarks.
The decorrelation procedure performs the decorrelation of block diagonal matrices, each block matrix represents the
covariance of the states that correspond to a particular landmark.

p̃m = diag




pm1 +
j �=1∑

j

| k1j · C1j |
...

pmm
+

j �=m∑
j

| kmj · Cmj |




(37)

The set {kij}i,j meets the condition kij = 1/kji > 0. This un-correlated map is used to define a two dimension map
probability density distribution used by the particle filter to localise the vehicle.

A.2 Filter Initialisation

As the number of particles affects both the computational requirements and convergence of the algorithm, it is
necessary to select an appropriate set of particles to represent the a priori density function at time T0. Since the particle
filters work with samples of a distribution rather than its analytic expression it is possible to select the samples based
on the most probable initial pose of the rover. A good initial distribution is a set of particles that is dense on at least a
small sub-region that contains the true states value. The initial distribution should be based in at least one observation
in a sub-region that contains this true states value. Once a range and bearing observation from a landmark is obtained,
a distribution is created having a shape similar to a family of solid helical cylinders in the robot pose space, as shown in
Figure 10. Although it is recognised that some returns will not be due to landmarks, all range and bearing observations
in a single scan are used to build the initial distribution. Even though a set of families of helices will introduce more
particles than a single family of helices (one observation), it will be more robust when spurious observations are present.
For example, considering the observations of range and bearing as perfect observations, this defines a discontinued one
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Fig. 10. Dominant region for the robot pose (helicoid), after one range and bearing observation.

Fig. 11. Selected beacons in a reduced local map and uncertainty regions.

dimensional curve (family of helices) C, in the three dimensional space (x, y, ϕ)

Ci =




(x, y, ϕ) \
x = x (τ) = xi + zr · cos (τ)
y = y (τ) = yi + zr · sin (τ)
ϕ = ϕ (τ) = τ − zβ − π

2
τ ∈ [0, 2π)




(38)

These regions can be reduced by adjusting the variation of τ according to the uncertainty in ϕ. Assuming the presence
of noise in the observation and in landmark position

zr = z∗r + γr, zβ = z∗β + γβ

xi = x∗
i + γxi

, yi = y∗
i + γyi

(39)

this family of helices becomes a family of cylindrical regions surrounding the helices.

A.3 Selection of a reduced local map

In most practical cases the local map is very large when compared to the sensor field of view. Most of the landmarks
are usually beyond the range of the sensor. It is then possible to select only the visible beacons from the entire map
taking into account the actual uncertainties (see Section IV-C). Figure 11 presents this approach for the case of only
two particles. In this Figure (R, β) are the observations, the “ ∗ ” are the projected observation from each particle and
the encircled stars are the beacons. It can be appreciated from the figure that there are only a few beacons that can be
within the field of view of any of the particles. The other beacons are not considered to be part of the reduced map.

A.4 Interface with the CEKF

Two main issues need to be addressed to implement the switching strategy between the CEKF and the particle filter.
Detection of the potential data association failure while running the CEKF is implemented by monitoring the estimated
error in vehicle and local map states. The second issue is the reliable determination that the particle filter has solved
the multi-hypothesis problem and is ready to send the correct position to the CEKF back propagating its results. This
problem is addressed by analysing the evolution of the estimated deviation errors. The filter is assumed to converge
when the estimated standard deviation error becomes less than two times the noise in the propagation error model for
x, y and ϕ.

VI. Experimental Results

This section presents experimental results in two different outdoor environments. In these experiments a standard
utility vehicle was retrofitted with dead reckoning sensors and laser range sensors as shown in Figure 12.
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Fig. 12. The utility car used for the experiments is equipped with a Sick laser range and bearing sensor, linear variable differential transformer
sensor for the steering mechanism and back wheel velocity encoder.

Fig. 13. Car Park area

A. Hybrid Metric Maps

The experimental data for the first test were taken in the car park shown in Figure 13. No reliable GPS ground
truth was available due to lack of satellite availability in this type of environment. Figure 14 shows the trajectory and
landmarks’ positions estimated with the SLAM algorithm.

Figure 15 shows a map of the environment obtained with the laser sensor. This map presents a plot of the laser
observations after the errors in the landmarks’ estimation settled to a constant value. A satellite image of the environment
is also displayed in Figure 16 to compare with the map obtained in Figure 15.

The first step to implement the HYMM approach is to divide the map into LTRs as shown in Figure 17. The criterion
used to divide the regions was based on the distance between the base landmarks. Part (a) of this figure shows the
LTRs in the first lap, after all the landmarks were incorporated and the regions were already formed. Part (b) shows
the LTRs after a few laps. In (b) the landmarks’ positions were updated changing the triangles’ position and shape. It
is evident that the right part of the map had a much smaller change than the left part. This is due to the fact that the
vehicle started at location (0,0) and circulated clockwise. The map in the right had less uncertainty than the left part
since the vehicle will usually accumulate error when performing exploration and SLAM. It is noteworthy that in general
the LTRs will rotate or translate, but the shape will be preserved due to the correlation between the landmarks defining
the vertices of a LTR.

Finally Figure 18 presents a detailed view of the LTRs with the landmarks and OG map at the beginning of the
process and after a few laps.

B. Information Map

The IM algorithm was tested with the same dataset. Figure 19 shows the results obtained with the IM using the
navigation map obtained with the feature based SLAM algorithm. A constant information level set was selected and the
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Fig. 14. Estimated trajectory and landmarks’ positions using SLAM
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Fig. 15. Car park map obtained with SLAM using laser range sensor.

Fig. 16. Car park satellite picture.
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Fig. 17. The LTRs in the outdoor experiment. (a) In the first lap (b) After some laps the landmarks’ position change. ‘–’ triangles’ position
in the first lap, ‘-’ after some laps.
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Fig. 18. All the LTRs in the outdoor experiment. (a) In the first lap (b) After some laps, the local grid maps change because the landmarks’
position change.

IM was evaluated for two different times. After the SLAM process closes one loop, the quality of the map will improve.
In this case the previous information level will always cover a larger area as can be seen in Figure 19. The dark grey
region represents the initial level set and the light grey area represents the level set after the SLAM update. In this case
the determinant of the robot pose submatrix was used as a measure of the information. It is important to notice that
there are different ways to measure information, however this is not relevant for the IM implementation.

C. Data Association

The data association algorithm was tested in a larger outdoor environment to solve the problem of closing large loops
(Figure 20). In this outdoor experiment the CEKF filter is used to navigate while no multi-hypothesis problems appear
in the data association process, otherwise the particle filter is initialised with the pose and uncertainties reported by the
CEKF filter and is run after convergence is reached. This is shown in Figure 21 where the estimated path is plotted at
selected times. Figures 22 shows the deviations of the states x and y of the vehicle averaged over the fifty runs of the
Monte Carlo simulation. It is clear that convergence was achieved using the observations present in the first laser scan
since the error is reduced during a single time stamp. The error at time 26 decreased from 2.2 to 0.5 metres. This scan
included observations from several beacons. It is important to note that although the environment can be crowded with
landmarks and other spurious objects the algorithm remains robust since no data association is performed at this stage.
Obviously, the convergence time will depend on the number of features in the environment.

VII. Conclusions

This paper addressed the problem of autonomous navigation and mapping in very large environments. A new Hybrid
Metric Map (HYMM) structure is presented that combines feature maps with other metric representations in a consistent
manner. This approach allows the robot to maintain a very rich representation of the environment, and to robustly
perform tasks such as localisation and efficient path planning. The global feature map is partitioned into a set of
connected Local Triangular Regions (LTRs) that allow the representation of additional information not necessarily used
for navigation. These representations are defined inside each LTR and can form a multi-dimensional high resolution
representation of the environment, each dimension being a particular property of the local area such as terrain occupancy,
terrain travesability, humidity etc. This information can then be used for different purposes such as data association,
obstacle avoidance, planning or some non-navigation related tasks. The problem of map consistency is addressed with
the development of methods to estimate the information content of map regions in real time. This is an important
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t2. It can be seen that the light grey area contains the dark grey area since it was evaluated using the last updated map.
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Fig. 20. Example of data association problem when closing a large loop. The uncertainty at point 3 is larger than the separation between
landmarks A and B.

capability for autonomous systems as it allows the use of information content to influence vehicle trajectory planning.
In particular, it is important for SLAM as it enables planning of exploration cycles that do not violate the consistency
of the global map. Finally, the data association problem in complex environment is addressed with the development of
a relocalisation algorithm using a combination of CEKF and Monte Carlo filters. Experimental results in two types of
outdoor environments are presented to demonstrate the algorithms.
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