

XVI CONGRESO ARGENTINO DE CONTROL AUTOMATICO

Buenos Aires - Argentina
17 al 21 de Agosto de 1998

TRABAJOS PRESENTADOS

VOLUMEN 2

Publicado por

XVI CONGRESO ARGENTINO DE CONTROL AUTOMATICO 17 al 21 de Agosto de 1998 - Buenos Aires - Argentina

TRABAJOS PRESENTADOS VOLUMEN 2

MODELADO, IDENTIFICACION Y SIMULACION

050 Software para simulación e identificación de parámetros dinámicos de robots 368
Oubiña A, Zeida D, M. Anigstein
057 Sincronización de un oscilador a cristal mediante el sistema GPS 374
Gerardo E. Sager, Hugo Enrique Lorente, Carlos Muravchik
100 Modelado de sistemas de distribución de agua potable 380
Favio Masson, Gustavo Bortolotto, Alfredo Desages
104 Identificabilidad global robusta en sistemas de posicionamiento y orientación dinámicos 386
Mario A. Jordán
107 Identificación de sistemas: Preprocesamiento de datos y grado de generalización 392
Miguel Angel Abrahantes Vázquez, Osvaldo Agamennoni
111 Funciones lineales a tramos de alto nivel. Una base ortonormal. 398
Belén D'Amico, Pedro Julián, Alfredo Desages
114 Sobre la caracterización de un método de identificación de sistemas 404
Eleonora Bosco, Juan E. Cousseau
115 Filtros adaptivos utilizando bases ortonormales 409
Juan E. Cousseau, Osvaldo E. Agamennoni
117 Ecualización con realimentación de decisión: Análisis de prestaciones sobre canales dispersivos 414
Pedro Doñate, Carlos Muravchik, Juan Cousseau
122 Aproximación de sistemas no lineales discretos 420
O.A.A. Orqueda, M. Abrahantes, O. Agamennoni, A.C. Desages
124 Estimación de ondas P con técnicas poliespectrales 426
Diana G. Sánchez, Omar A.A. Orqueda, Silvia A. Padín
126 Análisis de métodos adaptativos para la compensación de la fricción 432
Diego Alonso, Federico Robbio, Eduardo Paolini, Alfredo Desages
139 Teoría de juegos con algoritmo genético aplicada a la optimización del despacho de la producción de crudo de un yacimiento 437
Gustavo Hernández, Augusto Zumarraga
141 Identifiability and experimental design: An overview 443
Guillermo B. Sentoni, Mario A. Jordán

XVI CONGRESO ARGENTINO DE CONTROL AUTOMATICO
 17 al 21 de Agosto de 1998 - Buenos Aires - Argentina

MODELADO, IDENTIFICACION Y SIMULACION (100)

Modelado de Sistemas de Distribución de Agua Potable

Favio Masson ${ }^{\dagger}$, Gustavo Bortolotto ${ }^{\dagger}$, Alfredo Desages ${ }^{\ddagger}$
Universidad Nacional del Sur
Departamento de Ingeniería Eléctrica
Av. Alem 1253, (8000) Bahia Blanca
fmasson@icriba.edu.ar

Abstract

Resumen: En este trabajo se consideran aspectos relativos al modelado de redes de distribución de agua potable, utilizando para ello una red eléctrica análoga a la primera. Los fenómenos hidráulicos estáticos y/o dinámicos pueden ser adecuadamente simulados con elementos eléctricos. La teoría existente para la resolución de redes eléctricas está muy desarrollada y se poseen herramientas de cálculo poderosas y confiables, hecho que motiva este trabajo.

Modeling of Water Distribution Systems

Abstract: In this work, based on the "theory of duals", an analog electrical network is used to represent the water network. This approach is motivated by the fact that efficient software packages are available to perform stationary and transient analysis of large electrical networks. These tools can be easily applied to analyze and control water distribution networks.

Palabras Claves: Grandes sistemas, Modelado, Redes de Agua, Redes eléctricas

1 INTRODUCCIÓN

La escasez de recursos de agua ha comenzado a ser un problema serio en las áreas urbanas, lo que plantea la necesidad de estudiar técnicas para minimizar las pérdidas en la red de distribución. Por otro lado, los usuarios deben recibir el agua con un nivel de presión adecuado, que además no sobrepase limites preestablecidos para garantizar la seguridad de cañerías y juntas. Por esta razón las presión debe ser regulada a un nivel adecuado. Desafortunadamente, a medida que transcurre el tiempo, la aptitud de la red para transportar agua disminuye y la demanda en general se incrementa. Estos sistemas al envejecer reducen su capacidad por la corrosión o incrustaciones y son mas susceptibles a roturas o pérdidas.
Un sistema de agua municipal puede ser definido como todos aquellos componentes y servicios involucrados en la provisión de agua potable a los usuarios. Una red de distribución de agua contiene clementos de transmisión (cañerias), almacenamiento (tanques), fuentes de suministro de potencia (tanques y bombas) y elementos de control (válvulas, bombas). Dada las caracteristicas de estos sistemas, tales como su gran magnitud y las no linealidades presentes en la relación presión/caudal, tal regulación no puede ser llevada a cabo sin estrategias de control avanzadas, como por ejemplo el control descentralizado. Para tener una idea de la dimensión del problema, para una ciudad con 300.000 habitantes, una red simplificada puede contener 700 caños y 500 uniones y el manejo en linea de las variables de control (bombas y válvulas) es muy complejo.
La mayoría de trabajos que tratan el problema del modelado de redes de distribución consideran
simplemente a cada componente de la red como una resistencia no lineal. Para el diseño de la red, en lo que respecta a su crecimiento, mantenimiento y/o reemplazo de cañerías, ésto se asume suficiente. Cuando se desea controlar la estructura en línea para aprovechar al máximo su funcionalidad, resultan críticos ciertos comportamientos que una resistencia no puede representar. Como ejemplo, basta el hecho de considerar el perfil de altimetrías que no puede ser bien representado con estas aproximaciones.
En el presente trabajo, se presenta el modelado de todos los fenómenos hidráulicos (de estado estacionario y dinámico) de una red de distribución de agua utilizando una red eléctrica análoga, a la primera. El interés de ésto, reside en que existen numerosas herramientas en el ámbito de la ingeniería eléctrica que resuelven eficientemente el estado y transitorios de redes de gran escala, y éstas pueden ser fácilmente trasladadas para el estudio de redes de agua.

2 CARACTERÍSTICAS GENERALES DE LAS REDES HIDRÁULICAS

En primer lugar introduciremos los elementos que componen una red hidráulica y los fenómenos estáticos y dinámicos presentes en ella.
En hidráulica se entiende por tubería cualquier conducto cerrado que transporta agua a presión; por lo general de sección circular. Aquellos conductos cerrados en los que circula el agua sin llenarlos completamente se clasifican como canales abiertos y ejemplo de ello son las alcantarillas. En la forma en que emplearemos las palabras tubería y/o cañería, comprenderemos a todos aquellos conductos circulares que trabajan llenos. Para conducir agua en grandes cantidades las tuberias se

XVI CONGRESO ARGENTINO DE CONTROL AUTOMATICO
 17 al 21 de Agosto de 1998 - Buenos Aires - Argentina

construyen fundamentalmente de acero, fundición o concreto.
El uso del agua generalmente se clasifica como doméstico, comercial, industrial, publico y agricola. El uso doméstico incluye toda el agua usada dentro y fuera de la residencia y su cantidad varía con el estándar de vida pero es proporcional a la población residente en el lugar. El uso comercial incluye el uso de agua en zonas comerciales por personas que no residen en el lugar y no pueden ser establecido en función de la cantidad de personas; se estima si en términos del área ocupada. En el caso industrial, el uso no tiene que ver con la población sino con mecanismos de producción. El uso público del agua es fundamentalmente para apagar incendios. Las pérdidas de agua debido a roturas u otras causas, son frecuentes y con niveles importantes en el consumo global y en muchos casos se incluyen como uso público. En la agricultura, el provecho es esencialmente para riegos.
Algunos de los factores que afectan el volumen del consumo son el clima, clase de consumidores, calidad del agua, presión en el sistema de distribución, costo del agua, facilidades de desagüe (cloacas) y el uso o no de medidores del consumo. Las fluctuaciones en el consumo per capita de día a dia e incluso dentro del dia, son de mucha importancia en la posibilidad de administrar adecuadamente este recurso. El uso de agua para incendios es insignificante en la media anual, aunque en el momento del uso, tiene fuerte incidencia en el comportamiento de la red. Otro elemento que influye directamente en el comportamiento de la red, es que éstas son diseñadas a priori para periodos de varios años, 50 o más. Esto hace que la variación de población e inclusive el asentamiento no ordenado de ésta, implique la necesidad de cambios en la estructura o en el control.

La función del sistema de distribución es conducir el agua hacia los consumidores y, en el caso más simple, el sistema consiste fundamentalmente de cañerias que se encuentran enterradas en las calles de la ciudad. En sistemas más complejos, sin embargo, se deben incorporar otros elementos como tanques y bombas.

2.1 Elementos fisicos que componen la red

Las cañerías se pueden separar en tres grupos o partes: líneas troncales, secundarias y de servicio. El término "línea troncal" se reserva para aquellas cañerias que transportan agua desde las bombas o reservorios hacia otras cañerías o a una zona donde luego se distribuirá. Las lineas secundarias enlazan las lineas troncales con las de servicio y a menudo se confunden con éstas dos. Pueden abastecer a grandes consumidores y/o servir de respaldo a las líneas troncales. Las líneas de servicio son usadas para surtir a los consumidores y se encuentran en las calles desde donde se conectan a las casas.
Los tanques de servicio sirven en la red para balancear o proveer reservas por interrupciones causadas, por ejemplo, por la salida del servicio de una línea troncal. Sus características están determinadas por el tamaño de la zona a servir, las caracteristicas de las demandas en esa zona y la forma de alimentación.

Una bomba booster se usa comúnmente como un medio de incrementar la presión en una parte del sistema de distribución, de manera de proveer de suficiente agua a la presión adecuada. Por su naturaleza es opuesta a la funcionalidad de las válvulas que son reductoras de presión.

2.2 Fenómenos estáticos

Existen varios fenómenos que contribuyen a una pérdida en la carga o pérdida de presión en una tuberia. La mas importante es aquella pérdida continua cuando el agua fluye dentro de cualquier conducto recto, y ésta se mantiene en una proporción respecto de la longitud y prácticamente constante mientras no haya variación de velocidad del agua ni en el alineamiento del conducto. Las causas que dan lugar a las diversas pérdidas de presión se pueden simplificar en aquellas producidas a la entrada, las debidas al rozamiento, a causa de un ensanchamiento, por contracción de la cañería, por obstrucciones o debidas a curvas o cambios de dirección.

Pérdidas de energia debida al Rozamiento. Se han realizado muchos esfuerzos para determinar una ley que describa cómo se comporta la circulación de los fluidos en una tuberia en forma completa. Se desarrollaron formulas empíricas a partir de datos de ensayos y que parten del supuesto de que la perdida de energía sólo depende de la velocidad, las dimensiones del conducto y la rugosidad de la pared.

La aproximación hecha por Darcy-Weisbach, permite la evaluación de apropiada del efecto de cada uno de los factores que afectan la pérdida de carga h (ec.1)

$$
\begin{equation*}
h=f \frac{l}{d} \frac{v^{2}}{2 g} \tag{1}
\end{equation*}
$$

donde f es un coeficiente de rozamiento, l la longitud de la tuberia, d el diámetro interior, g la gravedad y v la velocidad media.
Cuando el flujo es laminar en las tuberías rectas, se llega a que en la pérdida de carga el coeficiente de rozamiento f sólo depende de la resistencia relativa de las fuerzas viscosa y de inercia. Cuando el flujo es turbulento, f varía con la rugosidad, la viscosidad y la densidad. En tubos lisos o muy lisos (vidrio, metal estirado, etc.), f dependerá casi exclusivamente de las propiedades de los líquidos. En tuberías muy rugosas, el flujo es completamente independiente de estas propiedades pero depende de la rugosidad relativa que resulta del cociente entre la rugosidad y el diámetro del tubo.
Hay un tercer tipo o categoría de flujo turbulento y es aquél que se encuentra en el medio de los dos enunciados. La distribución urbana de agua potable se produce dentro de este régimen, aunque con el tiempo los tubos aumentan su rugosidad y el valor de f se duplica o triplica pudiéndose alcanzar regímenes de corriente turbulenta plena.
Formula de Hazen-Willams. Esta fórmula fue desarrollada tanto para tuberias como canales abiertos y

XVI CONGRESO ARGENTINO DE CONTROL AUTOMATICO
 17 al 21 de Agosto de 1998 - Buenos Aires - Argentina

es la más utilizada en el modelado de cañerías. Su forma es:

$$
\begin{equation*}
h=0.5995 \cdot l \cdot\left(\frac{p}{a}\right)^{1.667}\left(\frac{v}{C_{1}}\right)^{1.85} \tag{2}
\end{equation*}
$$

donde a es el área de flujo, p es el perímetro mojado de la tubería y C, es un coeficiente que se establece en función de las características y tipo de material de la cañería.
Otras perdidas de carga secundarias pueden representarse en función de la velocidad media de la tubería v como:

$$
\begin{equation*}
h=K_{i} \frac{v^{2}}{2 g} \tag{3}
\end{equation*}
$$

Por ejemplo, para el caso de pérdidas a la entrada en valor de K_{i} depende del tipo de entrada, siendo el más elevado para entrada sobresaliente en el interior de 0.78 y llegando a 0.04 para entrada en boca de campana.
En el caso de las pérdidas debido a las válvulas, la relación dependerá de las características de las válvulas y en algunos casos la expresión puede ser como la de la ecuación 3. Tal es el caso de una válvula compuerta.
La función caracteristica de una bomba puede ser modelada como:

$$
\begin{equation*}
\frac{h}{h_{r}}=a-b\left[\frac{v}{v_{r}}\right]^{c} \tag{4}
\end{equation*}
$$

donde h_{r} y v_{r} son los caudales y presiones nominales de la bomba, mientras que a, b y c son constantes que determinan las caracteristicas de ésta.
Tanto la bomba como la válvula, poseen restricciones que afectan el funcionamiento de la red entera.

2.3 Fenómenos dinámicos

Los fenómenos que implican una dinámica en una red dc distribución de agua están vinculados con dos elementos presentes en las redes. Ellos son la inertancia que imponen las cañerias y la capacidad que representan los tanques.
El primero de los efectos es conocido en hidráulica por sus consecuencias en las ondas de presión del agua, y se denomina comúnmente golpe de ariete. Supongamos que por un tubo con una válvula en su salida se descarga un depósito. Si se cierra la válvula súbitamente, se crea dentro de la tuberia una presión dinámica, además de la presión estática normal. A esta presión dinámica se la llama golpe de ariete y se produce por la transformación súbita de energía cinética en energia de presión.
Las ondas de presión viajan a través de las cañerias a una velocidad que depende de la elasticidad del agua y de las paredes del caño, y es idéntica a la velocidad de las ondas de sonido bajo condiciones similares. El incremento en la presión tendrá una relación derivativa con el caudal y se puede aproximar por:

$$
\begin{equation*}
h=K_{l} \frac{d v}{d t} \tag{5}
\end{equation*}
$$

donde K es una constante que incorpora elementos tales como los módulos de elasticidad del agua, de las paredes de la tubería, el espesor de estas y su diámetro interior. Cuando el tiempo de cierre es mayor que el doble de la relación entre la longitud de la tubería y la velocidad de la onda de presión, esta carga se relaciona con el área de cierre de la válvula y los decrementos de velocidad del agua.
La otra característica dinámica de la red está relacionada con la capacidad de almacenamiento. El nivel de agua se vincula con el caudal con una dependencia integral que se puede expresar en forma simple como:

$$
\begin{equation*}
h=\frac{1}{K_{c}} \int v d t \tag{6}
\end{equation*}
$$

donde K_{c} es una constante que incluye la sección transversal del tanque entre otros factores.

3 CARACTERISTICAS GENERALES DEL MODELADO DE REDES

3.1 Principios y variables de redes

Para poder plantear un modelo de la red es preciso realizar un análisis previo de la misma. La principal característica del análisis de redes es la predicción del comportamiento del conjunto de componentes interconectados entre sí a partir del conocimiento del comportamiento aislado de cada elemento, y la forma en la cual los elementos están conectados para formar la red.
El principio fundamental en el que se basa el análisis es el principio de conservación de la energia. Para el propósito del análisis de redes éste se puede expresar como la potencia total de la red, hallada a partir de la suma sobre todos los elementos de la misma, es igual a cero. Para cada elemento, la potencia puede ser determinada por la medición de un par de variables relacionadas entre sí, cuyo producto es la potencia en el componente.
Para cada caso, una de las variables que definen la potencia tiene el mismo valor en cada uno de los terminales del componente, mientras que la otra es la diferencia entre valores de la variable en cada terminal. Aquellas variables que se propagan a través del elemento, se definen como variables de tipo 1 , para un sistema de fluido se corresponden con el flujo mientras que en un eléctrico lo es a la corriente. Aquellas que se determinan entre el par de terminales, se definen como de tipo 2 , y se corresponden con la diferencia de presión respectivamente, y la diferencia de tensión en los sistemas anteriores.
La integración de las variables de tipo 1 o de tipo 2 da otras variables utilizadas en el análisis de sistemas dinámicos, por ejemplo, la integral en el tiempo de la corriente eléctrica da una carga. Estas variables pueden ser clasificadas como variables integradas de tipo $/ \mathrm{y}$ variables integradas de tipo 2 , en el sistema de fluidos

XVI CONGRESO ARGENTINO DE CONTROL AUTOMATICO 17 al 21 de Agosto de 1998 - Buenos Aires - Argentina

estas corresponden a volumen y momentum de presión, y en uno eléctrico a la carga y el acoplamiento de flujo.
Los componentes de los sistemas dinámicos pueden ser clasificados en depósitos y conversores, y los depósitos pueden ser aún clasificados en depósitos de tipo 1 y depósitos de tipo 2, de acuerdo a que tipo de relación gobierna el almacenamiento. Esto da la clasificación de componentes que en un sistema de fluidos se corresponde la capacidad e inertancia de los fluidos y en un eléctrico con la capacidad y la inductancia.
Si se' adopta un conjunto de convenciones consistente para la orientación, cada componente de la red puede ser representado por un segmento orientado, y la red entera puede ser asociada a un grafo orientado.
La forma más conveniente de construir el grafo de un sistema dado es imaginar que un conjunto completo de instrumentos de medición de potencia, con una convención para la orientación consistente, se conecta a todos los componentes del sistema, para obtener el balance de potencia completo. Todo par de medidas es así representado por un segmento arbitrariamente orientado, y el conjunto completo de segmentos orientados es el grafo orientado del sistema.

3.2 Restricciones sobre las variables de potencia

Cuando un conjunto de componentes se conectan entre si para formar una red, las variables relacionadas con la potencia del componente no son más independientes, dado que la suma de potencia sobre toda la red debe ser cero. Esta condición de conservación de la energía es la base para diversos postulados.
Postulado de nodo para variables de tipo 1 : La suma algebraica de todas las variables de tipo 1 incidentes en un vértice de la red o de un grafo orientado es cero. Para un sistema de fluidos la suma algebraica de todos los flujos en cualquier punto de conexión es cero. Para un sistema eléctrico se aplica la ley de Kirchoff para corrientes ($K C L$) que dice que la suma algebraica de todas las corrientes incidentes en cualquier nodo de la red es cero.
Postulado de circuito para variables de tipo 2: La suma algebraica de todas las variables de tipo 2 alrededor de cualquier circuito de la red o de un grafo orientado es cero. Para un sistema de fluidos la suma algebraica de todos las diferencias de presión tomadas a lo largo de cualquier circuito es cero. Para un sistema eléctrico se aplica la ley de Kirchoff para tensiones ($K V L$) que dice que la suma algebraica de todas las diferencias de tensión que hay entre el par de terminales de cada componente a través de cualquier circuito es cero.
A partir del grafo del circuito y de los postulados, y mediante el uso de diversas matrices, se puede hacer el análisis de una red.

4 RELACIONES TOPOLÓGICAS ENTRE LAS VARIABLES DE LA RED

4.1 Matriz de incidencia

Aunque la información contenida en el grafo orientado G_{d} describe completamente la interconexión y las
direcciones de referencia de la ramas de la red, no es una forma adecuada para representar una red en una computadora, por eso se recurre al uso de matrices.
La información contenida en G_{d} puede ser completamente almacenada en una matriz llamada matriz de incidencia. Se utiliza la matriz de incidencia nodo-rama.
Matriz de incidencia \mathbf{A}_{a} : Para un grafo orientado G_{d} con n nodos y b ramas, se define la matriz de incidencia como una matriz de $n \times b$ tal que

$$
\begin{equation*}
\mathbf{A}_{a}=\left[a_{i j}\right] \tag{7}
\end{equation*}
$$

donde
$a_{i j}=1$ si la rama j es incidente en el nodo i, y la flecha apunta desde el nodo i.
$a_{i j}=-1$ si la rama j es incidente en el nodo i, y la flecha apunta hacia el nodo i.
$a_{i j}=0$ si la rama j no es incidente en el nodo i.
Para expresar las ecuaciones de lazo como una sola ecuación de matrices, es necesario introducir otra matriz, llamada matriz de lazo asociada al grafo orientado G_{d}.
Considerando primero un grafo no-orientado G_{n}, se tienen n, lazos. Cada lazo es asociado a una orientación determinada, indicada por una flecha. Cada lazo es llamado lazo orientado.
Matriz de lazo \mathbf{B}_{a} : Para un grafo orientado G_{d} con b ramas y n_{l} lazos orientados, se define la matriz de lazo como una matriz de $n_{l} \times b$ tal que

$$
\begin{equation*}
\mathbf{B}_{a}=\left[b_{i j}\right] \tag{8}
\end{equation*}
$$

donde
$b_{i j}=1$ si la rama j está en el lazo i, y sus direcciones coinciden.
$b_{i j}=-1$ si la rama j está en el lazo i, y sus direcciones son opuestas.
$b_{i j}=0$ si la rama j no está en el lazo i.

4.2 Análogos, duales y duálogos

Dos redes que posean el mismo grafo lineal y los mismos tipos de fuentes (fuentes de tipo 1 y de tipo 2 correspondientes en ambos casos) distribuidas en las mismas posiciones relativas sobre el grafo son llamados estructuralmente analógicos. Las mismas ecuaciones de nodo y de circuitos se obtienen para las dos redes. Si además las líneas correspondientes de los dos grafos se refieren a elementos del mismo tipo (esto es depósitos de tipo 1, depósitos de tipo 2, disipadores, fuentes de tipo1, fuentes de tipo2) las dos redes son llamadas análogas. Se dice que una red es análoga a la otra. Análogos mecánicos y de fluidos de una red eléctrica sólo existen en forma directa cuando todos los capacitores eléctricos de la red tienen un terminal en común que puede ser tomado como terminal de referencia. Esta dificultad puede evitarse mediante el

XVI CONGRESO ARGENTINO DE CONTROL AUTOMATICO 17 al 21 de Agosto de 1998 - Buenos Aires - Argentina

uso de transformadores ideales de radio unitario que aislen los capacitores, y corten la conexión directa. Estos transformadores pueden ser reemplazados por sus análogos en la red análoga a formar.
Si dos grafos tienen matrices de transformación tales que las ecuaciones de nodo de un grafo son iguales a las ecuaciones de lazo del otro, se dice que los dos grafos son duales. Si dos redes tienen grafos duales y además los roles de las variables de tipo 1 y de tipo 2 para los elementos correspondientes en el grafo dual son intercambiados (esto es depósito de tipo 1 con depósito de tipo 2 , fuente de tipo 1 con fuente de tipo 2, etc.), entorices se dice que las dos redes son duales. En un sistema eléctrico, por ejemplo, todas las inductancias de la red primaria serán reemplazadas por capacitores en la red dual. Un análogo de una red dual, es llamado duálogo.
Los conceptos de análogo y dual permiten utilizar el análogo eléctrico de un sistema de fluidos, como es el caso de una red de distribución de agua potable. Por esta razón es posible realizar el análisis del modelo y el control del sistema a partir de una red eléctrica.

5 MODELO DEFINITIVO DE LA RED DE DISTRIBUCIÓN DE AGUA

Como hemos podido observar, es posible modelar un sistema de distribución de agua como una red donde las ramas son las cañerias y los nodos los tanques, uniones de caños, válvulas, bombas y en general, aquellos puntos donde el potencial puede ser evaluado. El modelo debe incluir todos los componentes hidráulicos de la red y si es posible considerar los perfiles de altimetría.
En el caso general, los consumos cstán distribuidos a lo largo de las cañerías por medio de los conductos de servicio. Por simplicidad éstos son considerados como concentrados en los nodos, asunción que es posible refinar en caso de ser necesaria, agregando nuevos nodos intermedios.
Como ya se dijo, las ecuaciones de la red se obtienen del balance de masas en cada nodo y lazo:

$$
\begin{gather*}
\sum_{j \in B(i)} \hat{i}_{j}=0 \tag{9}\\
\hat{v}_{j}=\Delta p_{j}=f_{j}\left(x_{j}, u_{j}\right) \quad j \in B \tag{10}
\end{gather*}
$$

donde

$\hat{i}_{j} \quad$ caudal por unidad de tiempo en el arco j
Δp_{i} diferencia de presión en el arco j
$u_{j} \quad$ la variable de control que representa el estado de una válvula o bomba en el arco j
f_{j} la función característica presión-caudal en el arco j
$B(i)$ el conjunto de arcos del nodo i
B el conjunto de arcos
N el conjunto de nodos
La función característica f_{j} debe representar todas las perdidas de carga que afectan una cañería. El caso donde sólo se consideren las pérdidas debidas al rozamiento y/o válvulas y bombas, esta relación puede
ser descripta con bastante aproximación por la siguiente ecuación:

$$
\begin{equation*}
f_{j}\left(x_{j}, u_{j}\right)=R_{j}\left|x_{j}\right|^{1.85} \operatorname{sgn}\left(x_{j}\right)+g_{j}\left(x_{j}, u_{j}\right) \tag{11}
\end{equation*}
$$

donde el primer término utiliza la relación de HazenWillams para lo que R_{j} es igual a una relación entre la longitud de la cañeria, su área, etc. (ec.2) . La función $g_{f}()$ representa las caracteristicas de las válvulas o bombas, y por ejemplo esta relación puede ser del tipo:

$$
\begin{equation*}
h_{j}\left(x_{j}, u_{j}\right)=u_{j} x_{j}^{2} \operatorname{sgn}\left(x_{j}\right) \tag{12}
\end{equation*}
$$

donde u_{j} esta restringido a los limites $\underline{u_{j}} \leq u_{j} \leq \overline{u_{j}}$
En la figura 1 se muestra una representación esquemática genérica de una rama. Este esquema es frecuente en sistemas eléctricos y se utiliza como un bloque o "caja negra". Una rama simple puede contener, como veremos, toda la información necesaria de la que sucede en una red.

Fig. 1. Modelo de la rama j
Como ya hemos presentado, la red de distribución de agua esta estará compuesta de los siguientes partes o presentará los siguientes comportamientos:
Una cañería simple podria ser modelada por una resistencia no lineal con las fuentes de tensión y corriente igual a cero (ec. 2 o 11).
Un consumo puede ser representado simplemente por una fuente de corriente en paralelo con una resistencia infinita y una fuente de tensión nula.
Una bomba puede ser modelada o bien cono una fuente de tensión con una resistencia no lineal en serie o con una fuente de corriente con una resistencia no lineal en paralelo (ec. 4).
Una válvula es simplemente una resistencia no lineal representando su curva característica (ec. 3 o 12).
Un tanque es un elemento dinámico que puede ser modelado por una capacidad, más una fuente de tensión en serie (ec. 6).
El inertancia en una caftería es representada considerado una impedancia no lineal (ec. 5).
Altimetrias, fuentes de tensión que se agregan a las ramas representando una elevación del potencial de esa zona de la red.
La motivación fundamental para elegir este tipo de representaciones se apoya en la existencia de un sinnúmero de herramientas de cálculo, para la resolución de redes eléctricas de gran escala, ya sca en su comportamiento dinámico como estático.

XVI CONGRESO ARGENTINO DE CONTROL AUTOMATICO 17 al 21 de Agosto de 1998 - Buenos Aires - Argentina

Es importante resaltar la incorporación simple en el modelo de elementos tales como la altimetría o los efectos dinámicos. A conocimiento de los autores, este trato de las redes no ha sido considerado tan simplemente como aquí se presenta (Carpentier et al., 1993, Miyaoka et al., 1984).
Resumiendo, con la información de las resistencias de las cañerias, la curvas caracteristicas de bombas y válvulas, los consumos estadisticos, la información de altimetria del terreno y la matriz de incidencia que representa la interconexión de la red, estamos en condiciones de modelar una red de distribución de agua.

6 CONSIDERACIONES ADICIONALES AL MODELADO DE UNA RED

Una vez que la red ha sido modelada, es necesario no sólo resolver el estado de la misma, usando toda la información que ha sido volcada en el modelo, sino también intentar alternativas para el control diario del sistema, cuyo objetivo en principio puede ser la regulación de presión.
Esto implica varios problemas 0 situaciones a considerar. Primero, se deben resolver una serie de ecuaciones no lineales con restricciones derivadas de la aplicación de las leyes de Kirchhoff. Luego, se debe estudiar la posibilidad de manejar un modelo cuyas dimensiones pueden comprender, aun para una ciudad pequeña, miles de ramas. Por último, que estrategia de control utilizar, cuando la cantidad de medidas disponibles en línea es escaso (sensores de caudal o presión), mientras que la información de consumos da información detallada en espacio pero agregada en tiempo.
Para el primer problema, se pueden utilizar algoritmos eficientes basados en aproximaciones lineales a tramos de la relación presión-flujo (Masson et al., 1997, Chua L. et al., 1975) y que pueden simplemente resolver un problema como el presentado hasta aquí.
Para que este modelo sea operativo, es necesario reducirlo con algún criterio para que en intervalos adecuados se pueda conocer el estado de la red y operar cl control en consecuencia. Una alternativa eficiente para solucionar este proceso de agregación de la red, es presentado por Miyaoka et al.(1984), que basa el algoritmo en la agrupación de nodos de manera de minimizar la máxima distancia de estos a ciertos nodos de la red, llamados núcleo. La distancia la medimos en función de las caídas de presión. La red definitiva estará constituida por los nodos núcleo con su presión y conectado a los otros por una cañeria ficticia que transporte el caudal equivalente a la red primitiva. Es interesante observar que el nuevo modelo sigue manteniendo la estructura para cada rama de la figura 1.
Cuando se intente controlar como dijimos debemos considerar las caracteristicas del sistema en cuanto a la calidad y tipo de medición que tenemos sobre las variables del sistema. Para ello se propone un esquema de control como el de la figura 2 (Miyaoka et al., 1984), donde existen dos lazos. En el primero, se calculan los puntos óptimos de operación basados en la información de los consumos mensuales de los usuarios, la topologia
de la red y los caudales de entrada. En el segundo se realiza un control lineal alrededor de estos puntos de operación usando las medias disponibles en los nodos corazón.
Es interesante destacar que los consumos tienen variaciones diarias muy importantes, que obligan a la consideración de las no linealidades. Además la función objetivo de control puede contener otros elementos como el costo del tratamiento del agua o el consumo eléctrico de las bombas.

Fig. 2. Esquema de Control
Con todo lo expuesto, fundamentalmente en lo que se refiere a la utilización de funciones lineales a tramos, y el hecho que estos sistemas tiene dinámicas lentas, se puede pensar en una implementación en linea. Pero para garantizar el éxito de este objetivo, es imprescindible contar con un modelo que soporte las imprecisiones propias de estos tipos de sistemas y un control que pueda utilizar las medidas disponibles del sistema. Aquí se intenta entonces, dar un marco a este problema, con herramientas sencillas y fáciles de asimilar.

REFERENCIAS

Carpentier P., Cohen G., (1993), Applied Mathematics in Water Supply Network Management, Automatica, 29, 1215-1250.
Chua L., Lin, P. (1975), Computer-Aided analysis of electronics circuits. Algorithm and computational techniques, 737 pags., Prentice Hall, Englewood Cliffs, New Jersey.
MacFarlane A. (1970), Dynamical System Models, 502 pgs., George G. Harrap \& Co. Ltd., London.
Masson, F., Bortolotto G., Desages A (1997)., Modelling and control of water distribution systems, Ler Congreso de Ingenieria de Procesos del Mercosur, Set 97, 397-398.
Miyaoka S., Funabashi M., (1984), Optimal Control of water Distribution Systems by Network Flow Theory, IEEE Tr. on Automatic Control, 29, 303-311

