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High-to-Low Propagation Delay 
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■
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 switches instantly from low to high.   Driver transistor (n-channel) 
immediately switches from cutoff to saturation; the p-channel pull-up switches 
from triode to cutoff. 

 

■

 

Circuit during high-to-low transition:
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; since n-channel MOSFET is 
saturated initially and the input voltage is a constant, the drain current is initially 
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The high-to-low propagation delay 
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 is (by definition) the time required for 

 

V

 

OUT

 

 to reach 

 

V

 

OH
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Hand Calculation of 

 

t

 

PHL

 

■

 

The output voltage decreases linearly over 0 < 

 

t

 

 < 

 

t

 

PHL

 

 if we assume that the 
MOSFET remains saturated:

 

■

 

The high-to-low propagation delay is given by:

Solving for the delay:
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Graphical Interpretation

■ The n-channel driver remains saturated throughout the first half of the transition 
from high-to-low...

note that the characteristics above are not for a square-law MOSFET, which 
would enter the triode region for VOUT < VOH - VTn; the error is not large enough 
to matter for hand calculations in any case
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Low-to-High Propagation Delay tPLH

■ For the low-to-high transition, the n-channel device is cutoff and the p-channel 
MOSFET is initially saturated and supplying - IDp(sat) to charge up the gate and 
parasitic capacitances. 

■ Therefore,

In order to have identical propagation delays, the width-to-length ratio of the p-
channel pull-up must be twice that of the n-channel driver, in order to compensate 
for the lower hole mobility in the channel.
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Power Dissipation

■ Energy from power supply needed to charge up the capacitor:

■ Energy stored in the capacitor:

■ Energy lost in p-channel MOSFET during charging:

During discharge, the n-channel MOSFET driver dissipates an identical amount 
of energy. If the charge/discharge cycle is repeated f times/second, where f is the 
clock frequency, the dynamic power dissipation is:

In practice, many gates don’t change state every clock cycle, which lowers the 
power dissipation

■ Additional source of dissipation: power flow from V+ to ground when both 
transistors are saturated. Can be significant, but hard to estimate by hand. 
Typical number: 25% of dynamic power dissipation.
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Power (cont.)

■ Practical numbers:  CL = 50 fF,  f = 200 MHz, V+ = 3 V, Ngates = 5 x 105 

P = 45 W ! (note that the real average depends on the average number switching 
per clock cycle)

Comparing Technologies -- the power-delay product

* Logic families are often compared by considering the product of the dynamic 
power dissipation and the propagation delay:

where V+ has been substituted for VOH to achieve a more universal result.

* For V+ >> VTn, 
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CMOS Static Logic Gates

■ “Static” -- logic levels remain valid so long as power is supplied

■ NOR and NAND gates
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CMOS NAND Gate

■ Qualitative description

Find transfer curve for case where VA = VB and both transition from 0 to 5 V

■ Transistors M1 and M2 are in series and have the same current; however, they do 
not have the same gate-source bias
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MOSFETs in Series

■ Transistors M1 and M2 are “in series” with the same gate voltage, for the case 
where the inputs are tied together (A = B) 

drain current is the same through each device ... what is the effective value of kP?

ground
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MOSFETs in Series (Cont.)

■ At VA = VB = VM, the cross section through M1 - M2 is:
 

■ Transistor M1 is in triode and M2 is saturated. From the cross section, the drain 
of M1/ source of M2 can be eliminated without affecting anything --> the two 
MOSFETs can be merged into a composite transistor with L1 + L2 = 2 Ln

■ Solving for VM for the case where VA = VB (note that the two p-channel devices 
are in parallel and have an effective width of W3 + W4 = 2 Wp 

 

where kn = µnCox (Wn/Ln) and kp = µpCox (Wp/Lp)

We could optimize VM = VDD/2, but there is another switching condition to consider
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CMOS Static NAND Gate

■ Second switching condition: VA = VDD and VB switches from 0 to VDD 

At VB = VM, the current through M1 and M2 is higher than when VA = VB since 
the gate voltage on M1 is now VDD and its VDS1 must be smaller --> VGS2 is 
larger. Effective kn is increased.

At VB = VM, only M4 is conducting current --> only half the current as for 
previous switching condition. Effective kp is that of device M4

■ Result: VM is 0.3-0.5 V lower than for VA = VB switching condition, for typical 
dimensions
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NAND Gate Transfer Functions

■ SPICE is useful to solve for the transfer functions under the various switching 
conditions (see Ex. 5.7). Note that the backgate effect means that the curves 
when VA switches and when VB switches are not identical.

■ Results: setting kn = 2 kp results in VM approximately VDD/2.
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CMOS NAND Gate Transient Analysis

■ Worst-case situation for low-to-high transition: only one of the p-channel 
transistors is switching (say M4):

■ For high-to-low transition, consider M1 and M2 in series with effective length at 
2Ln (worst-case since current is lowest with VA = VB)

■ For equal propagation delays, we require IDn = -IDp 

 --> kn = 2kp

The factor of 2 mobility difference between the p and n channels indicates that

(W/L)n = (W/L)p (2 input NAND gate)

■ For an M-input NAND gate, we find that

(W/L)n = (M/2) (W/L)p 

Note: NOR gates suffer from a factor of 2M between the n- and p-channel ratios 
which makes them unattractive for large fan-in gates
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