P:7, 17, 18, 20, 22, 23, 24, 25, 38 The terminal voltages of various npn transistors are measured during operation in their respective circuits with the following results: | Case | E | 8 | С | Mode | |------|------|------|------|------| | ì | 0 | 0.7 | 0.7 | | | 2 | 0 | 0.8 | 0.1 | | | 3 | -0.7 | 0 | 0.7 | | | 4 | -0.7 | 0 | -0.6 | | | 5 | 0.7 | 0.7 | 0 | | | 6 | -2.7 | -2.0 | 0 | | | 7 | 0 | 0 | 5.0 | | | 8 | -0.1 | 0 | 5.0 | | In this table, where the entries are in volts, 0 indicates the reference terminal to which the black (negative) probe of the voltmeter is connected. For each case, identify the mode of operation of the transistor. (Note that case 5 is a little tricky: To understand this situation, note that although the transistor is not symmetrical it can be operated with the roles of the emitter and collector interchanged in a so-called inverted mode.) - An *npn* transistor has an emitter area of $10 \ \mu m \times 10 \ \mu m$. The doping concentrations are: in the emitter $N_D = 10^{19}/\text{cm}^3$, in the base $N_A = 10^{17}/\text{cm}^3$, and in the collector $N_D = 10^{15}/\text{cm}^3$. The transistor is operating at $T = 300 \ \text{K}$, where $n_i = 1.5 \times 10^{10}/\text{cm}^3$. For electrons diffusing in the base: $L_n = 19 \ \mu m$ and $D_n = 21.3 \ \text{cm}^3/\text{s}$. For holes diffusing in the emitter: $L_p = 0.6 \ \mu m$ and $D_p = 1.7 \ \text{cm}^3/\text{s}$. Calculate I_S and β assuming that the base-width W is: - (a) 1 μm. - (b) 2 μm. - (c) 5 μm. - For case (b), if $I_C = 1$ mA, find I_B , I_E , V_{BE} , and the minority-carrier charge stored in the base. (Hint: $\tau_b = L_q^2/D_n$. Recall that the electron charge $q = 1.6 \times 10^{-19}$ Coulomb.) - 4 Two transistors, fabricated with the same technology but having different junction areas, when operated at a base-emitter voltage of 0.69 V, have collector currents of 0.13 and 10.9 mA. Find I_s for each device. What are the relative junction areas? - **5.** In a particular BJT, the base current is 7.5 μ A, and the collector current is 940 μ A. Find β and α for this device. - For a particular npn transistor, properly biased, the collector current is measured to be 1 mA and 10 mA for base-to-emitter voltages of 0.63 V and 0.70 V, respectively. Find corresponding values of n and I₅ for this transistor. If two such devices are connected in parallel and 0.65 V applied between the combined base and emitter in the conducting direction, what total collector current do you expect? - Show that for a transistor with α close to unity, if α changes by a small per-unit amount $(\Delta \alpha / \alpha)$ the corresponding per-unit change in β is given approximately by $$\frac{\Delta\beta}{\beta} \simeq \beta \left(\frac{\Delta\alpha}{\alpha}\right)$$ - Find $\Delta\beta/\beta$ for $\beta=100$ and α changes by 0.1%. Consider the large-signal BJT models shown in Figs. 4.5(b) and (d). What are the relative sizes of the diodes D_E and D_B for transistors for which $\beta=10?$ $\beta=1000?$ - **9.** A particular BJT when conducting a collector current of 10 mA is known to have $u_{BE} = 0.70 \text{ V}$ and $i_B = 100 \mu\text{A}$. Use these data to create specific transistor models of the form shown in Figs. 4.5(a) and (d). - **40 -** Using the *npn* transistor model of Fig. 4.5(b), consider the case of a transistor for which the base is connected to ground, the collector is connected to a 10-V dc source through a 1-k Ω resistor, and a 5-mA current source is connected to the emitter with the polarity so that current is drawn out of the emitter terminal. If $\beta = 100$ and $I_S = 10^{-14}$ A, find the voltages at the emitter and the collector and calculate the base current. - 41 The current I_{CBO} of a small transistor is measured to be 15 nA at 25°C. If the temperature of the device is raised to 75°C, what do you expect I_{CBO} to become? - 4.5(c) by a current source representing I_{CBO} . Interms of this addition, what do the terminal currents i_B , i_C , and i_B become? If the base lead is open-circuited while the emitter is connected to ground, and the collector is connected to a positive supply. Find the emitter and collector currents. - 13 From Fig. 4.6 we note that the transistor is not a symmetrical device. Thus interchanging the collector and emitter terminals will result in a device with different values of α and β, called the inverse or reverse values and denoted α_R and β_R. An npn transistor is accidentally connected with collector and emitter leads interchanged. The resulting currents in the normal emitter and base leads are 5 mA and 1 mA, respectively. What are the values of α_R and β_R? - 44 Sketch two additional models that parallel those given for the npn transistor in Fig. 4.5(b) and (d). - Consider the pnp large-signal model of Fig. 4.8(b) applied to a transistor having $I_5 = 10^{-13}$ A and $\beta = 40$. If the emitter is connected to ground, the base is connected to a current source that pulls out of the base terminal a current of 10μ A, and the collector is connected to a negative supply of -10 V via a $10 \text{-k}\Omega$ resistor, find the base voltage, the collector voltage, and the emitter current. - **16:** A pnp transistor has $v_{EB} = 0.8 \text{ V}$ at a collector current of 1 A. What do you expect v_{EB} to become at $i_C = 10 \text{ mA}$? at $i_C = 5 \text{ A}$? - For the circuits in Fig. P4.19 assume that the transistors have very large β . Some measurements have been made on these circuits, the results are indicated in the figure. Find the values of the other labeled voltages and currents. - Measurements on the circuits of Fig. P4.20 produce labeled voltages as indicated. Find the value of β for each transistor. - For a BJT having an Early voltage of 200 V, what is its output resistance of J = 40 - is its output resistance at 1 mA? at 100μ A? For a BJT having an output resistance of $10 \text{ M}\Omega$ at 10μ A, what must its Early voltage be? If the current is raised to 10 mA, what does the output resistance become? Fig. P4.19 Fig. P4.20 - **21.** For the conceptual circuit shown in Fig. 4.25, $R_C = 1 \text{ k}\Omega$, $g_m = 100 \text{ mA/V}$, and $\beta = 50$. If a peak-to-peak output voltage of 1.5 V is measured at the collector, what ac input voltage and current must be associated with the base? - For a BJT operating at a base current of 7.6 μ A and a β of 104, what values of r_{π} and g_m apply? What are the values of r_{τ} and α that correspond? - For a pnp BJT operating at an emitter current of 0.80 mA with an α of 0.99. what values of r_e , r_m and β correspond? - **24.** A pmp BJT is biased to operate at $I_C = 2.5$ mA. What is the associated value of g_m ? If $\beta = 50$, what is the value of the small-signal resistance seen looking into the emitter (r_o) ? Into the base (r_m) ? If the collector is connected to a 10-k Ω load, with a signal of 10-mV peak applied between base and emitter, what output signal voltage results? - **25** For the circuit in Fig. P4.97 select a value for R_B so that the transistor saturates with an overdrive factor of 10. The BJT is specified to have a minimum β of 30 and $V_{CESAI} = 0.2 \text{ V}$. What is the value of forced β achieved? - **26-**For the circuit in Fig. P4.98 select a value for R_E so that the transistor saturates with a forced β of 5. Fig. P4.98 **23** • A BJT operating at $i_B = 8 \, \mu A$ and $i_C = 1.2 \, \text{mA}$ undergoes a reduction in base current of $0.8 \, \mu A$. It is found that when v_{CE} is held constant the corresponding reduction in collector current is 0.1 mA. What are the values of h_{FE} and h_{FE} that apply? If the base current is increased from $8 \, \mu A$ to $10 \, \mu A$ and v_{CE} is increased from $8 \, t$ 0 10 V, what collector current results? (Assume $V_A = 100 \, \text{V}$ and neglect the effect of r_{tot}) - **28** Measurement of h_{fe} of an npn transistor at 500 MHz shows that $|h_{fe}| = 2.5$ at $l_C = 0.2$ mA and 11.6 at $l_C = 1.0$ mA. Further, C_μ was measured and found to be 0.05 pF. Find f_T at each of the two collector currents used. What must τ_F and C_μ be? - **24** A particular BIT operating at $I_C = 1 \text{ mA}$ has $C_{\mu} = 1 \text{ pF}$, $C_{\pi} = 10 \text{ pF}$, and $\beta = 150$. What are ω_T and ω_B for this situation? - Complete the table entries below for transistors (a) through (g), under the conditions indicated. Neglect r. | Transistor | / _E
(mA) | r _e
(Ω) | <i>g_m</i>
(mA/V) | <i>r</i>
(kΩ) | βο | ft
(MHz) | С <u>"</u>
(pF) | <i>C</i> ∓
(pF) | f _β
(MHz) 38. | |------------|------------------------|-----------------------|--------------------------------|------------------|-----|-------------|--------------------|--------------------|------------------------------------| | (a) | 1 | | | | 100 | 400 | 2 | | i: | | (b) | | 25 | | | | | 2 | 10.7 | 1 a | | (c) | | | | 2.525 | | 400 | | 13.8 | 4 (| | (d) | 10 | | | | 100 | 400 | 2 | | ti | | (e) | 0.1 | | | | 100 | 100 | 2 | | - | | (f) | I | | | | 10 | 400 | 2 | | (| | (g) | | | | | | 800 | 1 | 9 | 30 (| - 31-The transistor in Fig. 4.43 has the characteristics shown in Figs. 4.10 and 4.11. Let $V_{EE}=2$ V, $V_{CC}=12$ V, $R_E=270$ Ω , and $R_C=1200$ Ω . - (a) Find I_E and V_{HE} . - (b) Find Ic and VCB - **32** For the transistor in Fig. 4.43, $V_{HE} = 0.65$, $\alpha_F = 0.99$, and $I_{CHO} = 10$ nA. Let $V_{EE} = 5$ V, $V_{CC} = 10$ V. $R_E = 500$ Ω , and $R_C = 1$ k Ω . - (a) Find I_C and V_{CR} . - (b) Change R_C to 2 k Ω and repeat part (a). - The transistor in Fig. 4.44 is silicon: $V_{EB} = 0.7 \text{ V}$, $\alpha_F = 0.99$, and $I_{CBO} = 10 \text{ nA}$. - (a) Find R_R such that the ammeter current is 1 mA. - (b) Write an expression for I as a function of R_H - Sketch the collector characteristics (I_C versus V_{CE}) for an npn BJT having $\beta_F = 100$ and $I_{CEQ} = 0.5$ mA. Let $I_B = 10$, 20, 30, and 40 μ A. Ignore the Early effect. - **35-** Write a SPICE program to plot the curves of Fig. 4.25. Let $\beta_R = \alpha_R/(1 \alpha_R) = 0.11$ Hint: Set the base current to 1 mA and let SPICE step the collector current. - **36** Design the circuit of Fig. 4.45 using an *npn* transistor having a $\beta_E=100$ and a $V_{BE}=0.7$ V. Let $V_{CC}=V_{BB}=6$ V, and choose values of R_B and R_C such that $V_{CE}=3$ V and $I_C=10$ mA. - The pup transistor of Fig. 4.46 has $\beta_F = 100$ and $V_{BE} = -0.65$ V. Find the quiescent I_{B} , I_{C} , and V_{CE} . Is there any difference between the small-signal ac model for an npn transistor and that for a pnp transistor? Explain. Consider the amplifier circuit of Fig. 4.50 for which $\beta_F = 75$ and $V_A = 200$ V. Assume that the capacitors are open circuits to dc, and short circuits to the ac frequency of interest. - (a) Draw a dc model and find the operating point. - (b) Find the small-signal ac model parameters, and draw an ac small-signal model for the circuit. - (c) Find the voltage amplification v_{out}/v_{in} .