Laboratorio de Diodos - Curvas I-V

Duración: 3 horas.

Elementos a traer por el alumno: 1 diodo 1N4001, 1 preset de 100 Ω . Resistencias: 22K, 10K, 4K7, 1K8, 820, 220 Ω . 1 Capacitor de 150 μ F × 16 V.

Objetivo: El objetivo del laboratorio es que el alumno comprenda el significado de la resistencia dinámica del diodo y que su valor depende del punto de polarización en el que se encuentra el mismo. Además, se busca que alumno pueda definir un modelo para simular correctamente utilizando directivas de SPICE.

Ejercicio 1: Modelo de señal del diodo.

Se utilizará el siguiente circuito para medir el punto de polarización del diodo y para obtener la resistencia dinámica del mismo en diferentes puntos de operación.

El punro de polarización se determinará midiendo con multímetro para varios valores de R_1 , las tensiones V_{cc} , V_1 y V_2 . La resistencia que presenta el diodo a la señal puede determinarse midiendo la atenuación que ofrece el divisor resistivo formado por la resistencia dinámica del diodo y la resistencia R_2 cuando se aplica una señal al mismo.

Para realizar las mediciónes, utilice el siguiente procedimiento:

- 1. Tome una resistencia R_1 y mida su valor.
- 2. Arme el circuito y ajuste $V_{cc} = 10$ V.
- 3. Conecte el generador con una señal senoidal de baja amplitud y varíe R_2 hasta obtener aproximadamente una atenuación del 50 % de la señal de excitación.
- 4. Retire el generador y mida con el multímetro el valor de DC de V_1 y V_2 .
- 5. Escoja otro valor de R_1 y repita el procedimiento.

Utilice los valores medidos para armar una tabla que contenga V_{1pp} , V_{2pp} , V_{1DC} , V_{2DC} , V_{cc} , V_D , I_D y r_d .

Utilice los valores de DC de la tabla para ajustar los parámetros del modelo. Luego, grafique r_d vs V_D y compare con el modelo que ha ajustado.

Ejercicio 2: Simulación.

Simule el mismo circuito que utilizó en el laboratorio. Para describir el modelo correcto del diodo, se debe definir un nuevo modelo para el dispositivo con los valores de I_o y η encontrados anteriormente. Una vez que tenga el circuito completamente armado, incluya una directiva de SPICE. Para esto, en el LTSpice utilice el menú *Edit->SPICE Directive* o presione la letra S. En el cuadro de diálogo, agrege:

.MODEL diodo D Is=<valor> N=<valor>.

Por último, botón derecho sobre la D (en el diodo) para cambiar el nombre a "diodo".

Compare el valor de r_d que obtiene en la simulación con el que calculó en el laboratorio.