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CMOS Circuit Speed and Buffer Optimization

NILS HEDENSTIERNA anp KJELL O. JEPPSON, SENIOR MEMBER, IEEE

Abstract—An improved timing model for CMOS combinational logic
is presented. The model is based on an analytical solution for the CMOS
inverter output response to an input ramp. This model yields a better
understanding of the switching behavior of the CMOS inverter than
the step-response model by considering the slope of the input wave-
form. Essentially, the propagation delay is shown to be the sum of the
step-response delay and an input dependent delay that may account
for as much as 50-100 percent of the total delay. The matching between
the ramp input and the characteristic input waveforms is shown to be
easily performed for excellent agreement in output response and prop-
agation delay. Even though the short-circuit current is neglected, its
influence is shown to be small and may be corrected. As an example,
the timing model is used to optimize CMOS output buffers for mini-
mum delay. If the intrinsic output load capacitance is included in the
model, the optimum tapering factor is shown to be not ¢ but a value in
the range 3-5 depending on process parameters and design style. Also,
due to the input dependence of the propagation delay, the last inverter
stage in the buffer should have a larger tapering factor than the other
stages for minimum delay.

I. INTRODUCTION

URING the 1980°s, CMOS technology has evolved

as a major technology for VLSI design. The use of
algorithms to optimize circuit performance and software
simulations to verify logic and timing operation have be-
come major tools in VLSI design. As a result, there is a
strong need for accurate analytical models to describe cir-
cuit operation in general and CMOS circuit operation in
particular.

One important problem for VLSI design verification is
to find precise models for the propagation delay. Circuit
simulators, e.g., SPICE, consumeé too much CPU time to
be practical for other than small circuits with less than a
few hundred transistors, and logic simulators, e.g.,
TEGAS, that can handle up to several tens of thousands
of gates usually rely on insufficient delay models. Most
textbook analytical models [1] for the transient response
of CMOS inverters rely on step input waveforms. These
delay models are generally insufficient since they do not
consider a realistic input waveform and consequently do
not take into account the influence of the input waveform
on the propagation delay. In real circuit applications, the
input waveform will depend on the fan-out and the driving
capability of the preceding stage and, therefore, the prop-
agation delay will also depend on these parameters. Re-
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cently, some more precise delay models have been pre-
sented for NMOS logic [2]-[4].

In this paper, an analytical solution for the CMOS in-
verter output response to an input voltage ramp is pre-
sented in Section II. The model yields an analytical
expression for the propagation delay as a function of the
input ramp rise (fall) time with excellent agreement with
SPICE simulations. The analytical model neglects the
short-circuit power dissipation but, in a typical situation
with equal input and output slopes, the error in propaga-
tion delay will be less than a few percent. Also, after
comparisons with SPICE simulations, we are able to con-
clude that an average input voltage ramp may be used as
a very good approximation for most typical input wave-
forms. Therefore, we may generalize our analytical
expression for characteristic input waveforms. The prop-
agation is then a function not only of the fan-out and the
driving capability of the stage itself, as in the step-re-
sponse model, but also a function of the fan-out and the
driving capability of the preceding stage. In a typical
CMOS circuit application, the input-dependent propaga-
tion delay may well account for as much as 50-100 per-
cent of the total delay.

Even if the short-circuit power dissipation is neglected
in the analysis, the expression for the output waveform
may be used to approximately estimate the short-circuit
dissipation as long as it is small compared to the dynamic
power dissipation. This is done in Section III. The prop-
agation delay may then be corrected to improve agree-
ment with SPICE simulations.

The capacitive loads of the CMOS inverter are studied
in Section IV in order to include the intrinsic delay of the
inverter itself. Using this model, the optimum ratio be-
tween the widths of the P- and N-channel transistors in
the inverter may be determined. The analysis is per-
formed for inverters but may easily be extended to more
complex logic gates.

In Section V, we give a few examples on how to apply
the propagation delay model to buffers driving large ca-
pacitive loads in order to optimize the buffer for minimum
delay. As a result, the optimum tapering factor between
two individual inverter stages may be determined as a
process and design-style-dependent constant. The main
result of the buffer optimization is that, when the intrinsic
delay is taken into account, the optimum tapering factor
is approximately 3-5, depending on the processing pa-
rameters and the design style, and not e (the base of the
natural logarithm) as shown by Mead and Conway [5].
Also, due to the input dependence of the delay, the ta-
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pering factor in the last inverter stage should be larger
than in the other inverters.

Finally, in Section VI, the trade-off situation between
speed and area is illustrated. In conclusion, the analysis
in this paper yields an optimizing algorithm which is of
great help in buffer compilers, both for output buffers and
critical internal drivers of large capacitive loads, e.g.,
clock drivers.

II. ANALYSIS
A. Step Response

The speed of CMOS inverters is usually calculated as
the step-response propagation delay. The fall ¢,; and rise
t, .z propagation delays are then calculated as the time to
discharge the load capacitor C; through the N-channel
transistor and the time to charge the load capacitor through
the P-channel transistor, respectively. The input voltage
Vin to the CMOS inverter is then assumed to be an ideal
voltage step [1].

In both cases, the step-response output voltage V,,, is
first calculated and the propagation delay is determined as
the time needed for the output voltage to reach a certain
voltage level, e.g., Vpp /2. The output voltage response
for a rising and falling step, respectively, is then deter-
mined from the differential equations

kN[(Vin - VTN) Voul - V(z)ut/2]
dVou
_CL —_ = k
dr =2 (Vm - VTN)z
2
and
kP[(Vi = Vop = Vip) (Vow — Vop) —
dVouI _
1k
> Vo = Voo = Vip)’

where ky and kp are the N- and P-channel transistor con-
stants. V;n and Vyp are the N- and P-channel transistor
threshold voltages, respectively.

It is well known [1] that the fall and rise propagation
delays may be written

CL/kN [ 2n <2(1 - ’1) — Uy :l
tams = +n [T
Wy s(1—n) 1 —n . Vo
C
= —A4 3
A (3)
and
N C/kp { —2p +In <2(1 +p) - Uo)}
V(L +p) L1 +p U
=Sy, (4)

respectively, where vy = V. / Vpp is the normalized out-
put voltage and n = Vyy/Vpp and p = Vg /Vpp are the
normalized threshold voltages of the N- and P-channel
transistors.

Ay and Ap may be regarded as process constants for a
certain supply voltage and with the propagation delay de-
fined at a fixed level. Some typical values for Ay and Ap,
forn = —p = 0.12 and Vpp = 5 V at the 50-percent
level, are Ay = Ap = 0.27.

B. Ramp Response

The purpose of this paper is to get a more accurate pic-
ture of the output voltage response by letting the input
voltage be a voltage ramp. The normalized input voltage
may then be written

0, r <0
v,= <8, 0O0<t<r (5)
1, t>7

where 7 = 1 /s is the rise time of the input voltage ramp.
A similar equation is valid for a negative input ramp.

To calculate an analytical expression for the output
ramp response, we use the same differential equations (1)

fOl‘ Vin - VTN > VOLI(

for V‘m - VTN < Vout (1)
2
(Voul - VDD) /2] for [/in - VTP < V()ui
for Vi, — Vi > Vo, (2)

and (2) as in the case of an input step voltage. Thereby,
we neglect the short-circuit current flowing through the
N-channel transistor for a negative input ramp and through
the P-channel transistor for a positive input ramp, respec-
tively. This approximation will be justified in Section III.
To solve the differential equation, the operation of the
CMOS inverter must be divided into different regions.
Since the input voltage ramp will reach its final value with
the transistor either in saturation or in the linear region,
we get two main cases which will each be divided into
three regions. In the beginning, as long as 0 < v, — n
< v,, the N-channel transistor is saturated. We now de-
fine the normalized output saturation voltage v, when the
transistor leaves saturation and enters the linear region.
This voltage is given by v; = v;,, — n. We also define v,
as the output voltage when the input voltage reaches its
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final value. The two main cases are then defined by v, >
v, and vy > v;.

Case A: v, > v,: The first case to be studied is for
fast input ramps such that the transistor is still saturated
when the input voltage ramp reaches its final value, i.e.,
v, > v;. In this case, the saturation condition is given by
v, =1—-n.

Region 1: vy > v,: As long as the transistor is satu-
rated and the input voltage is a ramp, the differential equa-
tion becomes

dv k
L—dTO = _?N Vop(st — ”)2
and with the initial condition v, = 1 for st = n, integra-
tion yields

(6)

knV;
vy = ~—N—D—D(st—n)3.

6SCL

Since the transistor is still saturated when the input volt-
age reaches its final value, the output voltage at this time

(8)

(7)

k}V Izi)l) ( 1—-n )3

=1 -
b2 6sC,

is larger than the saturation voltage, i.e., v, > v, = 1 —
n. This condition may be formulated as

IC[V ‘/2)1) 6n
< 3
sCy, (1 —n)

which gives the minimum input slope valid in Case A.
Region 2: v, < vy < v,: With the input voltage at its

final value and the N-channel transistor still saturated, the
output voltage is given by

(9)

kv V,
vo = vy — NP2 (1 _p) (1 1)

2C, (10)

This is equivalent to the step response, the only difference
being that the initial condition for the normalized output
voltage is v, instead of 1 fort = 7.

Region 3: vy < vy: Forvy < v; = 1 — n, the transis-
tor enters the linear region, and the output voltage (also
in similarity with the step response) is given by

C, n <2(1 - n) —-vo> (11)

-t ar =
sat kNVDD(l — I’l) (2]
where 7, is the time when 2, = v,. Insertion of this initial
condition into (10) yields
2CL(v2 - (1 - n))
7
k}v LQDI)( 1 - ’1)

(12)

tt = 7+

Using the expression for », in (8), we obtain

:Z(ijl

gy =7 + T —
kyVpp(1 — n)

1
- 3—s(1 - n). (13)

The time delay from saturation to Vpp /2 can now be cal-

—region 1

v
2 - region 2

region 3

NORMALIZED VOLTAGE V/Vdd
o

TIME [nsl]

Fig. 1. Normalized output ramp response for a relatively fast input ramp
(Case A). The input ramp reaches its final value (v;, = 1, vo = v;)
before the N-channel transistor leaves saturation and enters the linear
region (vy = v,); hence, v, > v,. The fall propagation delay at the 50-
percent level is also defined (kyVpp/C, = 1.5 - 10°s7').

culated from (11), yielding a delay of

- G 2(1 —n)—-0.5
At_hmwu—nﬂ“< 05 >'(M)

The total propagation delay at the 50-percent level may
then be written

T 1
Limp, = b + A2 — = = 65 (1 +2n) + tyr g (15)

2
where 14y, «p 1S the step response delay (s = ).

The ramp response output voltage for this case is shown
in Fig. 1. According to (9), the input ramp is fast com-
pared to the output. The agreement with SPICE simula-
tions on level 1 (neglecting the P-channel transistor) is
exact.

Case B: v, > v,: In the second case, the N-channel
transistor leaves saturation while the input voltage is still
a ramp. This is true for input slopes implicitly given by,
e.g., (9):

kN VDD 6n
> 3 .
sCp (1 —n)
Region 1: vy < vy For output voltages vy > v, the
solution in (7) is valid. The output voltage v, when the

N-channel transistor leaves saturation is then determined
by insertion of the saturation condition v, = st — n, i.e.,

(16)

kvVop
=1 - —=uj 17
2, el (17)
Region 2: v, < vy < vy: When the input is a ramp
voltage and the N-channel transistor is in the linear re-
gion, the differential equation (2) becomes

¢, _

dr “‘kNVDD[(St - n)UO - U%/Z]

(18)
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This differential equation with the initial conditon v, =
v, fort = (v; + n) /s has the solution

1 exp I:kNVDD (st )2j| 1 .

— = N _or —n

Yo 25C <kNVDDU%>
viexp | ——

When the input voltage reaches its final value, the output
voltage v, may be determined from (19) after insertion of
st = 1.

Region 3: vy < v,: For times larger than 7 or, equiv-
alently, output voltages lower than v,, the output voltage
may be derived from

T T L <2(1 e UO)

- (ipzs))

The ramp response output voltage for this case is shown
in Fig. 2. The agreement with SPICE simulations on level
1 is exact.

The fall propagation delay ¢,; for these input slopes is
then

(20)

ta, = 1(0.5) = 7 (21)

where £(0.5) is the time when the output voltage reaches
the 50-percent level. ¢(0.5) is given by (19) if v, < 0.5
and by (20) if v, > 0.5. The voltages v; and ©,, indicat-
ing the different regions of operation for the N-channel
transistor, are plotted in Fig. 3. Also included are the dif-
ferent regions of operation for the P-channel transistor.

Similar expressions may be derived for negative input
ramps, when the output is going high, by solving the cor-
responding differential equations for the P-channel tran-
sistor.

The analytical expression for the propagation delay is
shown in Fig. 4 as a function of input ramp rise time to-
gether with SPICE simulation data with different ratios 8
of the P-channel to N-channel widths as parameter. As
may be seen, a straight line is a very good approximation
even for reasonably slow input ramps. In most cases, the
expression in (15) may be used as a good approximation.
Actually, the approximation is better when the influence
of the P-channel transistor is included than when it’s ne-
glected as in the analytical expression.
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Fig. 2. Normalized output ramp response for a relatively slow input ramp
(Case B). The input ramp reaches its final value (v, = 1, vy = v,) with
the N-channel transistor already in the linear region (v, = v,); hence,
v, < v,. The fall propagation delay at the 50-percent level is also defined
(kyVpp/Cp = 1.5 - 10°s71).
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Fig. 3. The different regions of operation for the CMOS inverter. The v,
and v, curves determine the shaded regions where the different analytical
equations for the output ramp response are valid as indicated by the re-
gion number.
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Fig. 4. The normalized propagation delay from SPICE simulations (cir-
cles) as a function of ky Vpp / sC, with the P-channel to N-channel width
ratio 3, as parameter together with the analytical expression (solid line).
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Fig. 5. The inverse of the normalized output slope at the 50-percent level
from SPICE simulations with the P-channel to N-channel width ratio 3,
as parameter ( 8 = 0, 0.5, 1.0, 1.5, 2.0). The figure illustrates that the
output slope for a certain inverter with a certain load is almost constant
independent of the input load and the input waveform as long as it is a
characteristic input waveform. The normalization is made with respect
to the analytical value.

C. Matching Between Ramp Response and Response of
Characteristic Input Waveform

In real circuit applications, the input waveforms to the
inverter is not a ramp but the output waveform from a
previous inverter in the circuit. Then, instead of looking
at the propagation delay as a function of the input ramp
rise time, we would prefer to regard it as a function of the
C, /k ratio of the preceding stage or, equivalently, as a
function of the step-response delay of the preceding stage.

The inverse of the output slope of an inverter for a cer-
tain output voltage, e.g., Vpp /2, may then be written

(22)

where B is dependent on the input waveform. In Fig. 5,
we have plotted the inverse of the output slope at the 50-
percent level for different characteristic input waveforms.
The characteristic waveform is the definite waveform to-
wards which the waveform converges in a series of iden-
tical inverters [6]. In our simulations, the characteristic
waveforms are varied by changing the capacitive loading
of the preceding inverters relative to the loading of the
studied inverter. As may be seen, the inverse of the slope
is approximately constant indicating that B may be re-
garded as a constant independent of the input waveform.
Once the value of B has been found to be constant, it may
be redefined to instead represent an average slope of the
characteristic waveform. This average slope may then be
used as an input to the next stage. In Fig. 6, we have
compared the ramp response with the characteristic wave-
form response in SPICE simulations and found that the
best value of B corresponds to a slope 70-percent of the
value at vy = 0.5.
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Fig. 6. Comparison between the ramp response and the characteristic
waveform response from SPICE simulations on a symmetric inverter with
the same P-channe! and N-channel widths (8 = 1). The best fit input
ramp approximation has a slope approximately 70 percent of the char-
acteristic input waveform slope at the 50-percent level (kyVyp/Cp =
1.5 - 10°s7™h).

By choosing the proper value of B and inserting into
(15) 1 /s from (22) and the step-response delay according
to (3), the fall delay of the nth inverter stage in a series
of inverters may now be written, remembering that the
input delay is determined by a P-channel transistor, as

9 C
=(=2£) a4y +(2) B
(thL)n <kN>n N <kP>n—l N

B
= (tanrsep), T ﬁ (tarsep),_,  (23)

where By = (1 + 2n)B/6. A typical value for By is
0.21. Essentially, the ramp response propagation delay is
the sum of the step-response delay and a certain fraction
(By/Ap) of the step-response delay of the preceding
stage. Similar empirical models have been used in differ-
ent timing simulators, either as analytical expressions [7]
or as look-up tables [8].
Replacing the P-channel transistor kp with

I
kp = B — ky

n

(24)

where u, and u, are the hole and electron mobilities, re-
spectively, and S is the ratio between the P- and N-chan-
nel widths, the delay may be rewritten as

CL BN CL
taw = Ay [ £) + (L) .
at N<kN>n Bf"‘_{’(k}v n—1

Hn
The fall propagation delay of a CMOS inverter, as sim-
ulated by SPICE with characteristic input waveforms [6],
is plotted as a function of (C, /ky),-;/(C./ky), in Fig.
7 together with the ramp response delay as a function of
kyVpp/sC;. Effectively, what we do by choosing the
value of B is to determine the relation between the upper

(25)
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(C/K) o,/ (/K

NORMALIZED PROPAGATION DELAY

1 2 3 4 5

KNVDEJ/ S CL

Fig. 7. The ramp-response propagation delay as a function of ky Vpy, /sC,.
(dashed) together with the characteristic waveform propagation delay as
a function of (C,/k), _,/(C./k),. The constant B has been chosen
for best fit between the upper and lower scales. The curves are from
SPICE simulations but the normalization is made with respect to the an-
alytical step-response delay.

and lower scales for the best fit over the most important
range.
In the same manner, the rise propagation delay may be

written as
A C C
tan = —— <“L> + Bp <_L> (26)
Bo \ky/, kn/ i
B —
Hn
where Bp is a constant equivalent to By.
The average propagation delay is then taken as
A C
td - = AN + '_5" <k—L>
B P N/ n
Hn
1 By <CL>
+ = (B —
2 F 8 B W\kn/n—
Hn
v )
=al—] +bl-—= . (27)
<kN n kN n—1

In this equation, a(C; /ky ), is the average step response
propagation delay of the inverter stage itself, while
b(Cp/ky),_ is a weighted fraction (b /a) of the aver-
age step-response propagation delay of the preceding
stage.

Some typical values, forn = —p = 0.12, Vp, =5V,
and 8 p,/p, = 1 at the 50-percent level, are a = 0.27
and b = 0.21. Typically, the input dependent delay then
contributes with 75 percent of the step-response delay for
an inverter loaded with an identical inverter at both input
and output.

ITII. CMOS PowEeRr DISSIPATION

When the output voltage response for a positive input
voltage ramp was calculated in the previous section, the
P-channel transistor current was neglected. Although that
means that we have neglected the short-circuit power dis-
sipation when both transistors are conducting, it is an ac-
ceptable approximation as long as the short-circuit power
dissipation is small compared to the power needed to
charge the capacitor. We may then use the output voltage
response to approximately calculate this power dissipa-
tion.

The P-channel transistor current is given by

1
;\[» 2
5 VZDD (tin — 1 = p)
for vy, —p > vy
2
kVop [(via =1 = p)(wg = 1) = (20 — 1)/2]

for v, —p < vy

(28)

The input voltage is v;, = st and the P-channel transistor
is conducting as long as v;, < 1 + p. The input voltage
vy, when the P-channel transistor is entering the linear
region, is determined by v,; ~ p = v, and

(29)

kyV,
UO___I__N_D.Q(pl_n)3

6SCL

The short-circuit energy dissipation per transition may
then be written

vp1/s
= k| |, e = 1= )= 1)

n/s
(1+p)/s

— (o — 1)°/2] dt + S (vm —1—p) dt}

17,7| 5

(30)

where the P-channel transistor is linear and the N-channel
transistor saturated in the first integral and the P-channel
transistor is saturated in the second integral. The expres-
sion for ¢ in (7) may then be inserted and the integration
yields

d ’ 4
P=CV% d{ﬁ (1 =n+p)v, —n)

d 5
—56(Upl - n)

d? 7 1
_ STM(UN -n) + 8(1 = v, +p)3J (31)

where d = kp VDD/SCL‘
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Fig. 8. Comparison between the ramp-response propagation delay for a
symmetric inverter with the same P-channel and N-channel widths ( 8
= 1) as simulated with SPICE and as an analytical expression with and
without correction for the short-circuit current. This correction is derived
as the short-circuit energy dissipation percentage of the capacitive en-
ergy dissipation. This percentage is also shown with the lower curves on
the right-hand scale.

A similar expression may be derived for the current
through the N-channel transistor while the load capacitor
is charged by the P-channel transistor.

The energy dissipation per transition is plotted as a
function of d in Fig. 8 for identical N- and P-channel tran-
sistors with n = —p = 0.12. For identical input and out-
put slopes (d = 3.175), the energy dissipation is 1.5 per-
cent of the capacitive energy dissipation. SPICE simula-
tions for ramp input voltages are shown for comparison.

Since the short-circuit energy dissipation is directly
proportional to the average short-circuit current and this
current is not contributing to the discharge of the load
capacitor, we approximately know with how many per-
cent we, on the average, have overestimated the discharg-
ing current when we calculated the propagation delay in
the previous section. As long as this percentage is small,
it is reasonable to believe that the propagation delay is
underestimated by the same percentage. This is also
shown in Fig. 8.

Veendrick [9] has shown that the short-circuit energy
dissipation per cycle in a symmetrical CMOS inverter (ky
= kp ) without capacitive load is

3

kyV?
P =P _2py.

125

Our expression above with d = 3.175 for identical in- and
out-slopes gives a value that is about 30 percent of the
maximal short-circuit power dissipation as calculated by
Veendrick.

(32)

IV. CMOS Loap CAPACITANCES
A. Linearized Capacitance Model

Assuming that all the capacitances in the inverter are
linearized to constant values, let’s relate them to the gate

TABLE I
TypPICAL SPICE PARAMETERS FOR CAPACITIVE LOAD CALCULATIONS {11}

N-channel P-channel
TOX 50 50 [nm]
CGS0, CGDO 3.0 E-10 3.0 E-10 {F/m]
CGBO 1.0 E-9 1.0 E-9 [F/m]}
(el 0.3 E-3 0.2 E3 [F/m?]
CISW 0.5 E-9 0.4 E-9 [F/m?]

capacitance C,, of the N-channel transistor. The P-chan-
nel gate capacitance may be written

Cop = 6,8C,, (33)

where 6, is a process parameter and £ is the channel width
ratio between the P- and the N-channel transistors. Usu-
ally, both transistors have the same gate oxide thickness
and the same channel length so that §, = 1.

In similarity with Kanuma [10], the output capacitance
of the N-channel transistor may be written

C, = vCp (34)

and the output capacitance of the P-channel transistor may
be similarly written

Cp = 7625an (35)

where v and 6, are process and layout dependent param-
eters.

The load capacitance C; of an inverter with a fan-out
of n similar inverters may then be written

CL = Cu[(1 +88)n + (1 +8,8)7]. (36)

With the inverter input gate capacitance C, equal to the
sum of the N- and P-channel gate capacitances

Co = Con + Cpp = G (1 + 6,8) (37)
the output capacitance is given by
C. = Co(n + gv) (38)
where
g =(1+68)/(1+868). (39)

Hence, g+ is the ratio between the intrinsic output capac-
itance and the input gate capacitance of the inverter.

The typical SPICE parameters related to capacitive
loads are shown in Table I. Using these values, we may
calculate

6 =1
6, = 0.72
v = 1.57
and
gy =135 for g =1.

Here, the value of gy may be reduced to about half when
large multiple-gate transistors are used and two gates are
sharing the same collector contact, e.g., in output buffers.
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Using (27), the propagation delay for an inverter with
a fan-out of n identical inverters and a fan-out of m iden-
tical inverters in the preceding stage (including the in-
verter itself) may now be written

C
w=gd e s en]. @0

The propagation delay may be divided into three different
delays. These are the intrinsic delay

Cg
ta = 72~ (a +b)gvy (41)
N
the fan-out dependent delay
G
tdO = ——an (42)
ky

which is usually specified as a delay per unit external ca-
pacitance load in custom-design cell libraries, and finally
the input load dependent delay

lgin = 7~ b 43

di kN m ( )
which is usually forgotten in cell library specifications but
which may add important contributions to the total delay.

B. Optimum (8 for Minimum Delay

The analytical expression for the propagation delay as
formulated in (40) may also be used to find the optimum
8 for minimum delay. For a given, standard-size N-chan-
nel transistor, we may look for optimum § by taking the
derivative dt,/df, remembering that C,, a, b, and g are
all 8-dependent. Optimum § is then given by

5 - \/& Ap(n + ) + Bu(m + 7)
" o Av(8in + 8yy) + Bp(dym + 6yy)

As expected for Ap = Ay, By = Bp, 6, = 6, = 1, and n
= m, we get

(44)

B = o2

‘ Bp
The propagation delay is plotted as a function of 3 in Fig.
9. As may be seen, there is less than 10 percent to gain
in propagation delay by optimizing @ instead of using
standard-size N- and P-channel transistors with § = 1.

V. BUFFER SPEED OPTIMIZATION

In order to drive large off-chip load capacitors with a
minimum of propagation delay, it is necessary to use an
output buffer consisting of a number of CMOS inverters
with gradually increasing driving capability according to
Fig. 10. The tapering factor f, of the nth inverter stage is
defined as how much the input capacitance is increased in
the following stage, i.e.,

fo=(C), 1 /(C), (45)

NORMALIZED PROPAGATION DELAY

P I SR

3

2
CHANNEL WIDTH RATIO f3

Fig. 9. The propagation delay (normalized with respect to the minimum
delay) as a function of the P-channel to N-channel width ratio 5.

'n-I fn fvul

I Iv T
(cl)n_| (cl)n (cl)nd

Fig. 10. A CMOS buffer consisting of a series of inverters with gradually
increasing driving capability.

where (C, ), and (C,), are the inverter input capaci-
tances for the n + 1th and nth stages, respectively. If all
the inverters have the same value of (3, this definition
means that the driving capability is also increased with
the tapering factor

fo = (k) /(K),

where (k) , +; and (k), are the transistor constants of the
respective stages. With constant 3, this relation is valid
for both the N- and P-channel transistors. These two
equations then yield

SICRGIS

The load capacitance of the nth stage may now be written,
according to (38), as

(C), = (fu + 87)(Cy),-

(46)

(47)

(48)

The average propagation delay of the nth inverter stage
may now in the same way be written according to (40) as

C
(1), = k—j [a(f, + gv) + b(fuu1 + 87)]  (49)

where C, /ky is the inverter input gate capacitance to N-
channel transistor constant ratio for any of the inverters
in the buffer chain.
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A. ‘“‘Infinite Buffer’’

Now, assuming a constant tapering factor f, the prop-
agation delay may be written as

(t), = 7o( f + g7)

where 7 = C,/ky(a + b). If the buffer chain consists
of N stages, the total delay may be written

tg = 1oN(f + gv) (51)

where the tapering factor is assumed to be constant such
that, by definition, f¥ = ¥, where ¥ = C, / C, is the ratio
between the external load capacitance C; of the last (Nth)
inverter and C,, the gate capacitance of the first inverter.
Eliminating N in (51), using N = In Y /In f, yields a buffer
delay

(50)

tg = 1oIn Y(f + gv)/Inf. (52)

Looking for optimum f, for minimum delay, we take the
derivative

dtg 1 ft+ey
df =179 In YIjlnf f(lnf)zi (53)

with a minimum for f, implicitly determined by

f, = elevtfo)/fo. (54)

The optimum tapering factor f, as a function of gv is
plotted in Fig. 11. As may be seen, gy = 0 yields f, =
e, which is according to Mead and Conway [5] who have
done this optimization neglecting the intrinsic load capac-
itance of the inverter. A similar optimization has also been
done by Kanuma [10], but instead of plotting f,, he has
plotted @ = 1/In f, without clearly indicating that a is
related to the optimum tapering factor, and by Nemes [7]
who has plotted £, as a function of gv /(1 + gvy). The
buffer propagation delay as a function of f with g+ as pa-
rameter is shown in Fig. 12.

The optimum tapering factor for use in an output buffer
design may be regarded as a constant for any given pro-
cess, with its design rules, and the design style being used.
The designer knows the optimum tapering factor of his/
her process and may then easily determine the optimum
number of inverters N, in the output buffer from

N, =1nY/Inf, (55)

However, the number of inverters N can only be an inte-
ger number. We then have to check whether N = ror N
=r+ 1,wherer < N, < r + 1, gives the shortest buffer
delay.

Using f = (Y) AR eliminate fin (51) above, the delay
may be rewritten as

tp = TO[N((Y)I/N + g'y)].

As described by Kanuma {10], the optimum number of
inverters is then N = rif

r[(Y)]/r +gy] < (r + 1)[(Y)1/(r+” + gv]

(56)

(57)
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OPTIMUM TAPERING FACTOR

gr

Fig. 11. Optimum tapering factor £, as a function of g+, the ratio between
the intrinsic output load capacitance and the input gate capacitance of
the inverter.

NORMALIZED PROPAGATION DELAY
T
N

T

1 2 3 4 5 6 7 <] g 10
TAPERING FACTOR, f

Fig. 12. The propagation delay (normalized with respect to the minimum
delay at gy = 0) as a function of the tapering factor f, with gy as pa-
rameter for a CMOS buffer.

and N =r + 1 if
AN+ gv] > (r+ DI + gv]. (58)

However, rarely more than 5 percent will be lost in prop-
agation delay if N = r is chosen instead of N = r + 1 in
the second case, but considerable savings in area may be
achieved as discussed in the next section.

Since the chosen number of inverters may not be ex-
actly equal to the optimum number yielding the optimum
tapering factor f,, the actual tapering factor should be ad-
justed to
1/N

f=)

B. “‘Finite Buffer’’ with Integer Number of Inverters

(59)

So far the step-response and ramp-response buffer op-
timization has yielded the same result. The fact that the
capacitive loading of the input of an inverter increases the
delay cf that inverter stage will, however, be important if
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CL=Cy

external
capacitive

{ load

output buffer

internal
logic
circuitry

Fig. 13. A CMOS output buffer together with part of the internal circuitry.

we look more carefully at the first and the last buffer
stages. An output buffer is shown in Fig. 13 together with
part of the internal circuitry. The internal circuitry con-
sists of a number of standard-size inverters. In Fig. 13,
the last internal inverter is loaded with m similar invert-
ers, one of these being the first inverter stage in the buffer.
This means that the tapering factor between the first in-
verter in the buffer and the last inverter in the internal
circuitry is m instead of f. Using (40), the delay of the
first stage is

; (60)
where f; is the tapering factor for the first stage and C,
and kg are the standard-size inverter input capacitance and
standard-size N-channel transistor constant, respectively.

The load of the Nth inverter is the external capacitor
C;. The last stage is different with respect to the other
inverter stages since its output waveform will not affect
the delay of any succeeding stages. This may be a reason
to believe that the last stage should have a different ta-
pering factor fy. The delay of the last stage may then be
written

C b
thh = —alfi + gy - (m+ gv)]
0

(61)

C b
th=’k_Ooa[fN + 8 +;(f+ gv)]-

The total delay of the output buffer where all stages, ex-
cept the first and the last, have the same tapering factor f,
may then be written

b
IB=Toa

+ b
+ (N =2)(f+ &)

(m +gy) +fi +8v

a

+
b+ a

(fv + gv)}- (62)

TABLE 11
Y-REGIONS WHERE | TO 5 BUFFER STAGES GIVE SHORTEST PROPAGATION
DELAY

Mead, Conway [5] ‘‘Infinite buffer’’ ‘‘Finite buffer’”

N gy =0 gy =1 gy=1,b/a=075
1 -4 -6 -10
2 4-11 6-22 10-38
3 11-32 22-82 38-143
4 32-87 82-300 143-525
5 87-237 300-1086 525-1900
The relation between the tapering factors is
N-2, _
L7 fw=T (63)

In order to find the optimum f; and fy related to f for
any given number of inverters, we let the derivatives equal
zero yielding f; = fand fy = (1 + b/a) f. This means
that for minimum delay, at the 50-percent voltage level,
the last inverter sfage should have a larger tapering factor
than the rest of the inverter stages in the buffer. This result
is a consequence of the delay dependence of the input
waveform. If this dependence were removed, by letting b
= (), the tapering factor should be constant for all stages,
including the last stage.

Using these optimum tapering factors, the buffer delay
in (62) may be rewritten

mb
g = TO{N(f+ gY) + 7t b]' (64)
This expression is very similar to the delay in (51) and
derivation yields the same optimum tapering factor f, as
before!

In Table II, we have shown the Y-regions where 1, 2,
3, 4, and S buffer inverter stages are most effective for the
two cases of our analysis, together with the analysis of
Mead and Conway [5]. Typical values of gy = 1and b /a
= 0.75 have been chosen for our analysis.

C. Buffer with Different 3 in the Last Inverter Stage

Another interesting case is when the output inverter
must have equal rise and fall times so short that a tapering
factor smaller than the optimum tapering factor must be
used in the last stage. In this case, the N- and P-channel
transistors in the last stage must have equal driving ca-
pabilities, i.e., By = p./ pp> even if other vlaues of B are
used in the internal circuitry and the other buffer stages.
In this case, the buffer delay may be written

=3 52| @+ D)+ eV - 1)

1 + 6,8y

*(Ay + 4p) +m(BP+BN)} (65)
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Fig. 14. The normalized buffer area plotted as a function of the tapering
factor f, together with the normalized propagation delay. Both quantities
are normalized with respect to their values at f = f, for gv = 1.

where the tapering factor f in the first N — 1 stages may
be optimized while the tapering factor fy in the last stage
is an independent constant. Thus, f¥ " 'f, = Y.

Again, the optimum tapering factor f, is given by (54),
and the optimum number of inverters N, by

N,=InY'/Inf, (66)

where Y' = Y/fy.

The tapering factor is still defined as how much the in-
put capacitance is increased from one inverter stage to the
next. However, for the last stage, with a different 8y, it
is no longer a consequence that the N- or P-channel de-
vices are fy times larger than their predecessors. Instead,
it may be shown that if the inverter input capacitance is
scaled up by a factor of f, then the individual N-channel
transistor is scaled up with a factorx = f (1 + 6,8) /(1
+ 6,8n).

Using an integrated circuit technology with §, = 1 and
a mobility ratio of u,/u, = 2.5 and choosing 8 = 1 in
all but the last stage, where 8y = p,/u,, we find that the
N-channel transistor in the last stage is scaled up by a
factor of x = 0.57f, while the P-channel transistor is
scaled up by Syx = 1.43f.

VI. BUFFER AREA OPTIMIZATION

So far, we have only minimized the buffer propagation
delay without any area or power dissipation considera-
tions. The area and also, in a first approximation, the
power dissipation of the buffer may be considered to be
proportional to the sum of the input capacitances of all
the buffer stages. For an output buffer consisting of N in-
verter stages with a constant tapering factor f, this sum
may be written

_ 1 1 1
Cot = Cof" l<1+?+F+"'+fT;‘> (67)

where C; is the input gate capacitance of the first stan-
dard-size inverter in the buffer. If we sum all the stage

capacitances, the total capacitance may be written

Yy -1
Co = Co F{
Both the area and, in a first approximation, also the total
power dissipation ( C,,, V3p) is then proportional to 1 /(f
— 1). In Fig. 14, the normalized area is plotted as a func-
tion of f together with the normalized propagation delay
(for gy = 1). In this diagram, we can also see the relative
time penalty when the tapering factor instead is chosen to
minimize area or power dissipation. Since the propagation
delay curve is rather flat, we can see that we are loosing
only 10 percent in propagation delay, while more than 50
percent in area or power dissipation is saved. As an ex-
ample, let’s take a buffer with the optimum number of
inverters Ny = 5. If we instead choose N = 4, the tapering
factor must be increased to f3/4, which gives a loss of
about 3 percent in propagation delay, but saves 35 percent
in area. If only three inverters are chosen in the buffer,
the loss in propagation delay is about 22 percent but 54
percent is saved in area.

(68)

VII. CONCLUSIONS

By presenting an analytical solution for the output re-
sponse of a CMOS inverter to a ramp input signal, an
improved understanding of the switching behavior of the
CMOS inverter is achieved. The model is easily gener-
alized to characteristic input waveforms yielding a prop-
agation delay model that is far superior to the step-re-
sponse model since it includes the input load dependence
of the propagation delay. As a consequence, this input-
load dependent delay should be added to the traditional
intrinsic and fan-out dependent delays in custom-design
cell libraries to improve timing calculations. The model
is also ideally suited for inclusion in timing simulators.

As an example of the usefulness of the switching model,
we have applied it to the problem of output buffer opti-
mization for minimum propagation delay. It is shown that
the model presents an algorithm that should be very useful
as an optimizing tool in a CAD work station or silicon
compiler.
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