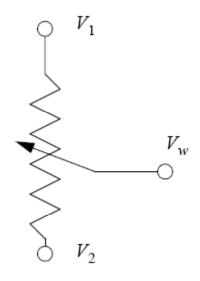
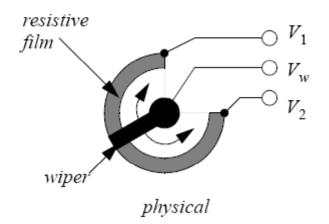


Elementos de Sensado

- Son dispositivos que se utilizan para transformar variables de cualquier tipo en señales eléctricas, de manera de poder procesarlas.
- Sensores:
 - Posición
 - Distancia
 - Angulo
 - Aceleración
 - Temperatura
 - Presión
 - Humedad
 - Fuerza
 - Intensidad de luz
 - Magnetismo

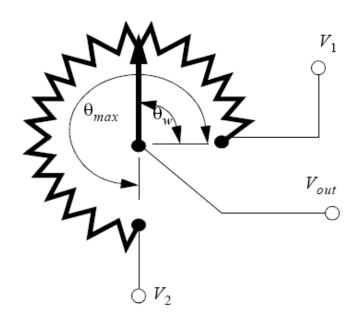

Parámetros

- Exactitud: es la máxima diferencia entre el valor indicado y el valor real.
- Resolución : es el mínimo incremento que el sensor puede detectar.
- Repetitividad: la medida de un mismo valor es realizada y repetida con pequeña variación.
- Linealidad
- Rango: es el valor límite que el sensor puede medir.
- Respuesta dinamica: es el rango en el que un sensor puede operar.
- Lugar de aplicación: existen sensores que no pueden operar en condiciones ambientales severas.
- Calibración
- Costo

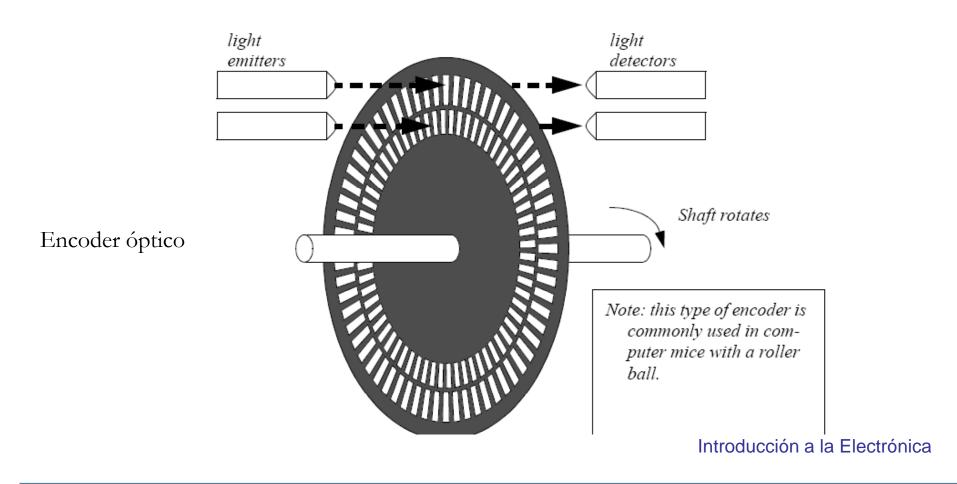


Sensor de desplazamiento angular

Potenciómetro

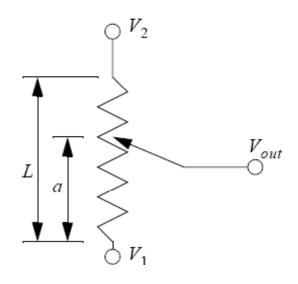


Sensor de desplazamiento angular



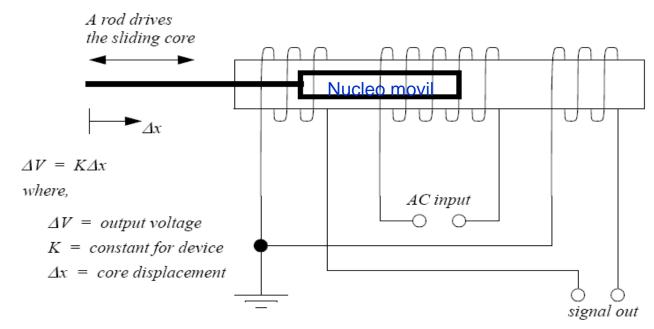
$$V_{out} = (V_2 - V_1) \left(\frac{\theta_w}{\theta_{max}}\right) + V_1$$

Conectado como divisor de voltaje, entrega una tensión proporcional a su posición angular

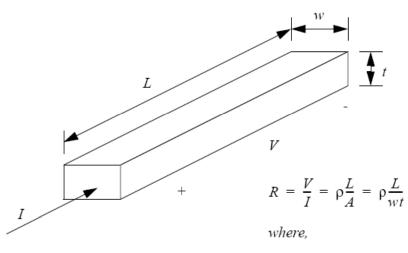

Sensor de desplazamiento angular

Sensor de posición lineal

Potenciometro lineal (similares a los utilizados en ecualizadores de audio)



$$V_{out} = V_1 + (V_2 - V_1) \left(\frac{a}{L}\right)$$

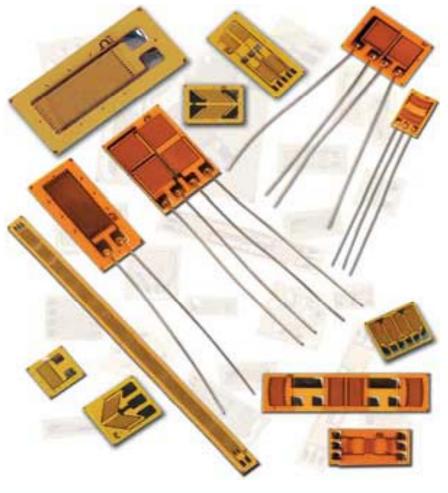

Sensor de posición lineal

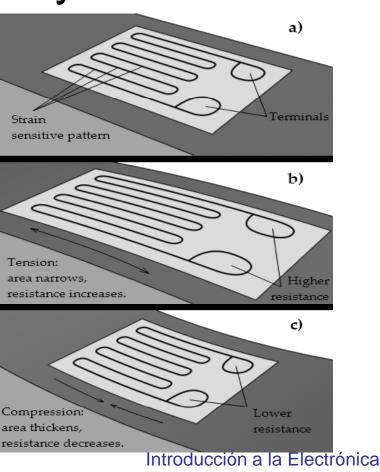
- Transformador variable diferencial linear (LDVT)
- Se aplica una tensión alterna, y la tensión inducida en cada bobinado secundario dependerá de la posición del núcleo magnético

• Strain gauges: miden fuerza sobre un material midiendo la variación de su resistencia eléctrica debido a su deformación

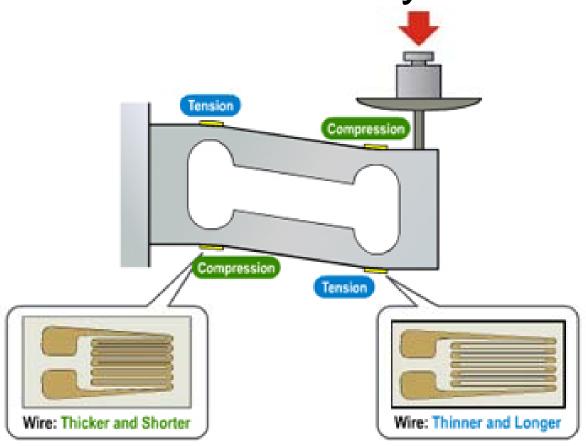
R = resistance of wire

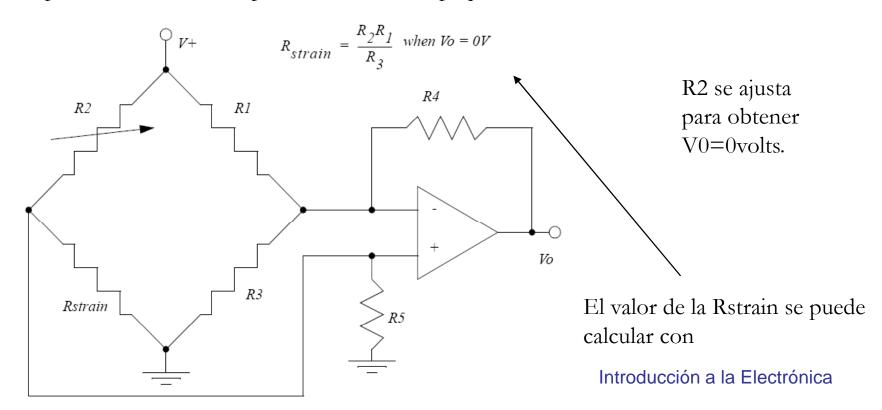
 $V, I = voltage \ and \ current$


L = length of wire

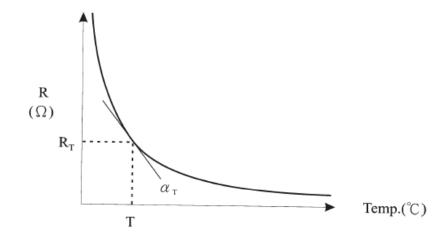

w, t = width and thickness

A = cross sectional area of conductor


 $\rho = resistivity of material$



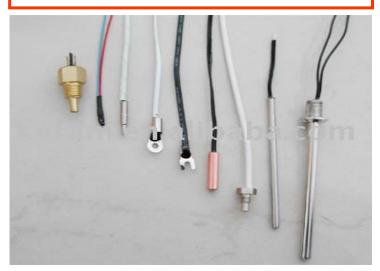
• Puente de Weasthone: La variación de resistencia es muy pequeña. El uso del puente de Weasthone permite medir estas pequeñas variaciones


Sensores de Temperatura

- Termistores
 - Resistencias NTC (coeficiente negativo de temperatura)
 - Resistencias PTC (coeficiente positivo de temperatura)
- RTD: resistive temperature detectors
- Termocuplas
- Circuitos integrados

Termistores

- Son elementos cuya resistencia varia con la temperatura.
- Basados en semiconductores.
- Estos dispositivos son muy sensibles a la variación de temperatura.
- Su respuesta es no-lineal.


$$\frac{1}{T} = A + BlnR + C (ln R)^3$$

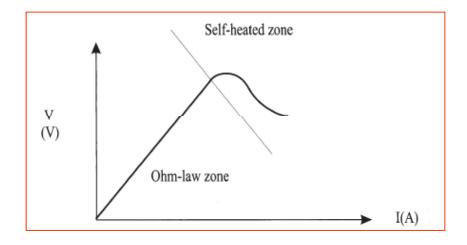
where:

T = Degrees Kelvin

R = Resistance of the thermistor

A,B,C = Curve-fitting constants

Introducción a la Electrónica


Termistores

Autocalentamiento:

Para medir la resistencia se aplica una corriente y se mide la tensión (o viceversa). Por lo tanto aparece un calentamiento por efecto Joule que distorsiona la medición.

Parámetros importantes

- Resistencia a T=25grados.
- Coeficiente de disipación térmica

RTD

• Resistive temperature detector: cuando un metal es calentado su resistencia se incrementa.

Material	Temperature Range C (F)	Typical Resistance (ohms)
Platinum	-200 - 850 (-328 - 1562)	100
Nickel	-80 - 300 (-112 - 572)	120
Copper	-200 - 260 (-328 - 500)	10

$$R_T = R0(1 + AT + BT^2 + C(T-100)T^3)$$

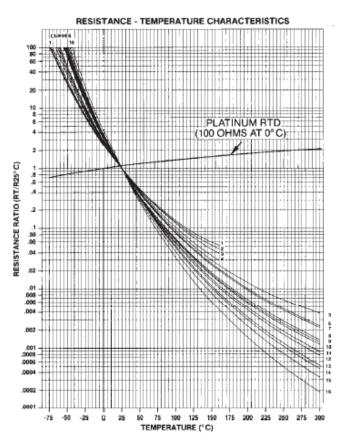
where:

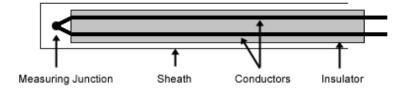
A = 3.9083 E-3

B = -5.775 E-7

C = -4.183 E-12 below 0°C, and zero above 0°C

NTC vs RTD




Figure 4: Resistance-ratio vs. temperature characteristics (NTC Thermistors vs. RTD's)

Termocuplas

- **Efecto Seebeck**: Un gradiente de temperatura a lo largo de un conductor crea una fuerza electromotriz.
- Si dos conductores de metales diferentes son unidos en un punto, una FEM es creada en los terminales abiertos.

Esta tensión es dependiente de las temperaturas T1 y T2.

Termocuplas

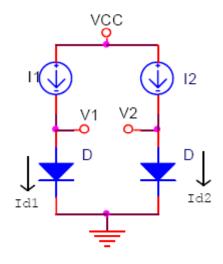
measuring
$$+$$
 device V_{out}

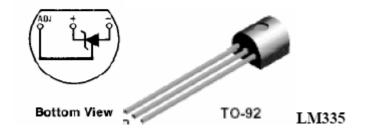
$$V_{out} = \alpha (T - T_{ref})$$

$$T = \frac{V_{out}}{\alpha} + T_{ref}$$
where,
$$\alpha = constant (V/C) \qquad 50 \frac{\mu V}{c} \text{ (typical)}$$

$$T, T_{ref} = current \text{ and reference temperatures}$$

Tipos de Termocuplas


Table 1: Thermocouple Types


ANSI Type	Materials	Temperature Range (°F)	Voltage Range (mV)
Т	copper/constantan	-200 to 400	-5.60 to 17.82
J	iron/constantan	0 to 870	0 to 42.28
Е	chromel/constantan	-200 to 900	-8.82 to 68.78
K	chromel/aluminum	-200 to 1250	-5.97 to 50.63
R	platinum-13%rhodium/platinum	0 to 1450	0 to 16.74
S	platinum-10%rhodium/platinum	0 to 1450	0 to 14.97
С	tungsten-5%rhenium/tungsten-26%rhenium	0 to 2760	0 to 37.07

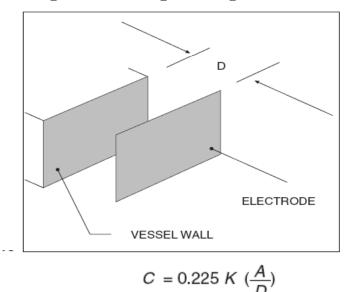
Sensor de Temp. integrado

• Dos diodos idénticos a la misma temperatura

LM335

Rango Temp: -40 a 100 grados

$$I_{_{d1}} = I_{_{0}}e^{_{_{qV1/KT}}}; \ I_{_{d2}} = I_{_{0}}e^{_{_{qV2/KT}}} \Rightarrow \frac{I_{_{d1}}}{I_{_{d2}}} = e^{_{_{q(V1-V2)/KT}}} \Rightarrow V1 - V2 = \frac{K}{q} \ln \left[\frac{I_{_{d1}}}{I_{_{d2}}} \right] \quad T \approx T \; .$$


Comparación sensores Temp

	Thermocouple	RTD	Thermistor	Integrated Silicon
Temperature Range	–270 to 1800°C	−250 to 900 °C	-100 to 450°C	-55 to 150°C
Sensitivity	10s of μV / °C	0.00385 Ω / Ω / °C (Platinum)	several Ω / Ω / °C	Based on technology that is -2mV/°C sensitive
Accuracy	±0.5°C	±0.01°C	±0.1°C	±1°C
Linearity	Requires at least a 4th order polynomial or equivalent look up table.	Requires at least a 2nd order polynomial or equivalent look up table.	Requires at least 3rd order polynomial or equivalent look up table.	At best within ±1°C. No linearization required.
Ruggedness	The larger gage wires of the thermocouple make this sensor more rugged. Additionally, the insulation materials that are used enhance the thermocouple's sturdiness.	RTDs are susceptible to damage as a result of vibration. This is due to the fact that they typically have 26 to 30 AWG leads which are prone to breakage.	The thermistor element is housed in a variety of ways, however, the most stable, hermetic Thermistors are enclosed in glass. Generally thermistors are more difficult to handle, but not affected by shock or vibration.	As rugged as any IC housed in a plastic package such as dual-in-line or surface outline ICs.
Responsiveness in stirred oil	less than 1 Sec	1 to 10 Secs	1 to 5 Secs	4 to 60 Secs
Excitation	None Required	Current Source	Voltage Source	Typically Supply Voltage
Form of Output	Voltage	Resistance	Resistance	Voltage, Current, or Digital
Typical Size	Bead diameter = 5 x wire diameter	0.25 x 0.25 in.	0.1 x 0.1 in.	From TO-18 Transistors to Plastic DIP
Price	\$1 to \$50	\$25 to \$1000	\$2 to \$10	\$1 to \$10

Sensores de Nivel

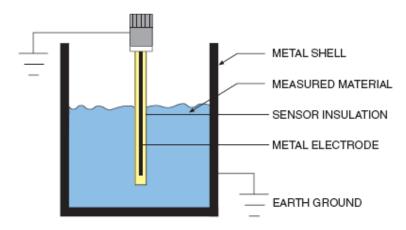
• Capacitor de placas paralelas

La capacidad depende de la distancia entre placas, la constante dielectrica del material entre placas y la sección de las placas.

where:

C = Capacitance in picoFarads

K = Dielectric constant of material


A = Area of plates in square inches

D = Distance between the plates in inches

Sensores de Nivel

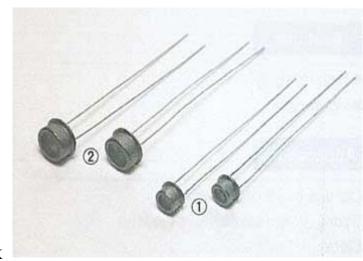
 Medición de nivel en materiales no conductores

La capacidad en forma aproximada esta definida como

$$C = \frac{0.225 (K_{air} \times A_{air})}{D_{air}} + \frac{0.225 (K_{material} \times A_{material})}{D_{material}}$$

Las constantes dieléctricas del líquido y el aire son conocidas.

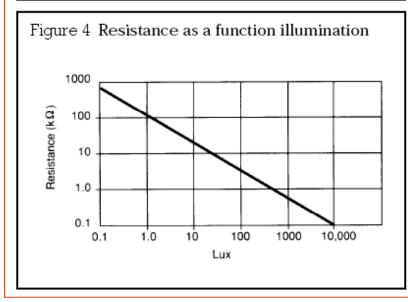
La sección de las placas se mantiene constante


La capacidad es función del nivel del liquido

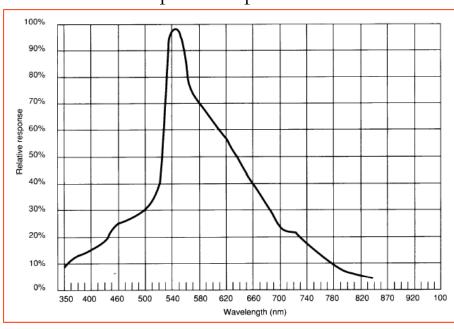
Sensores de Luz

• LDR (resistencia variable por iluminación)

Son dispositivos que varían su resistencia con el nivel de iluminación


Nivel de iluminación (en lux)

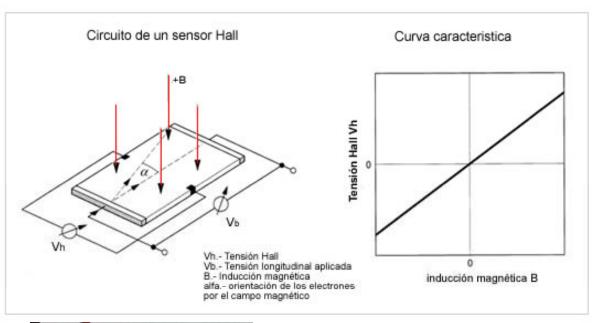
- Lámpara de 60 watts a 1 metro de distancia = 50 lux
- Luz de luna = 0.1 Lux
- Luz de sol = 30000 Lux
- Tubo fluorescente = 500 Lux

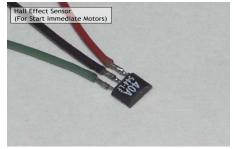


LDRs

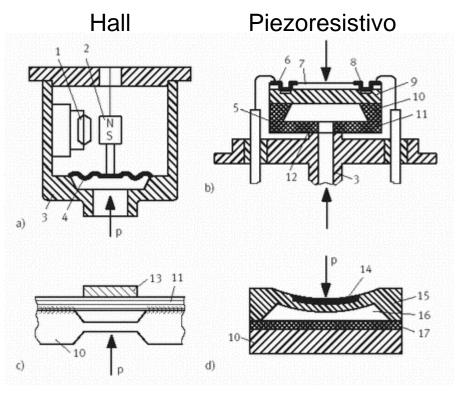
Parameter	Conditions	Min.	Тур.	Max.	Units
Cell resistance	10 lux 100 lux	20 -	- 5	100	$k\Omega$
Dark resistance	10 lux after 10 sec	20	-	-	ΜΩ
Spectral response	-	-	550	-	nm
Rise time	10ftc	-	45	-	ms
Fall time	10ftc	-	55	-	ms

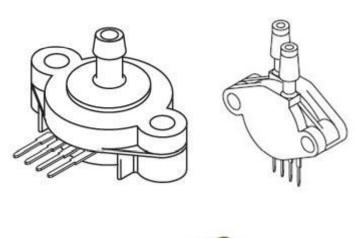
Respuesta espectral



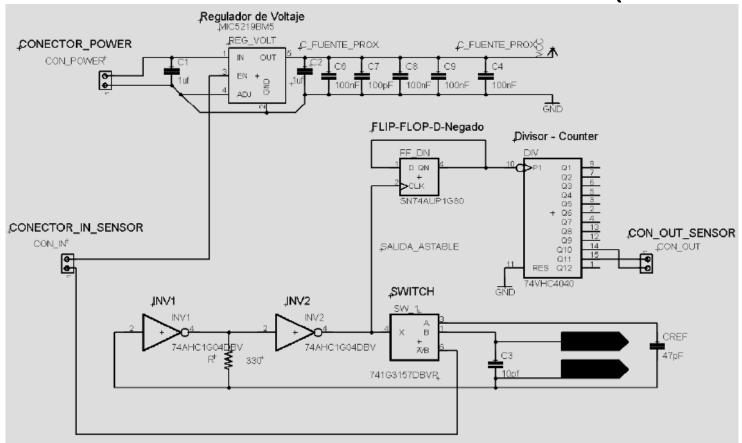

Mayor nivel de iluminación → menor resistencia eléctrica.

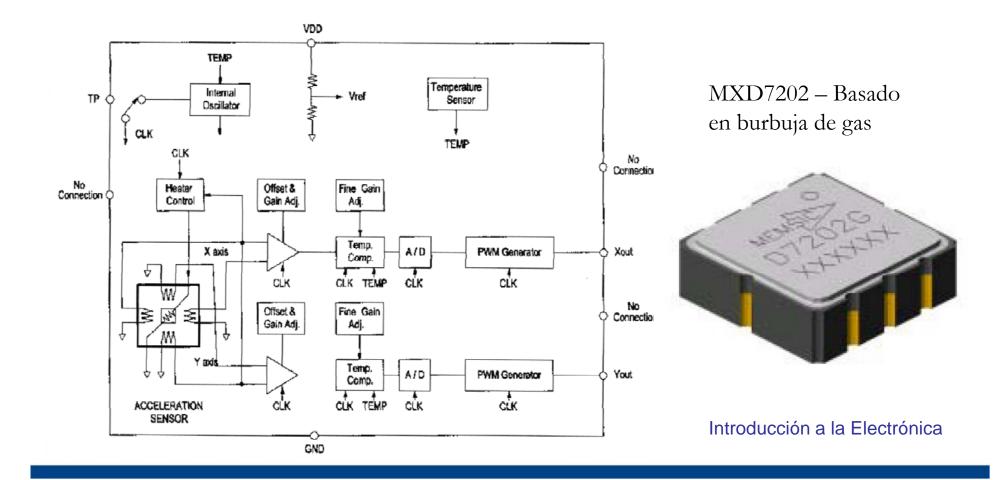
Sensores Magnéticos


Sensor Hall: Se basa en el ppio que en un conductor por el que circule una corriente eléctrica, y sea sometido a un campo magnético, los portadores se desviarán generando una diferencia de potencial en el eje transversal al de desplazamiento. Estos sensores son hoy en día ampliamente utilizados en sistemas de ignición de vehículos (sensado de posición de cigüeñal y árbol de levas)

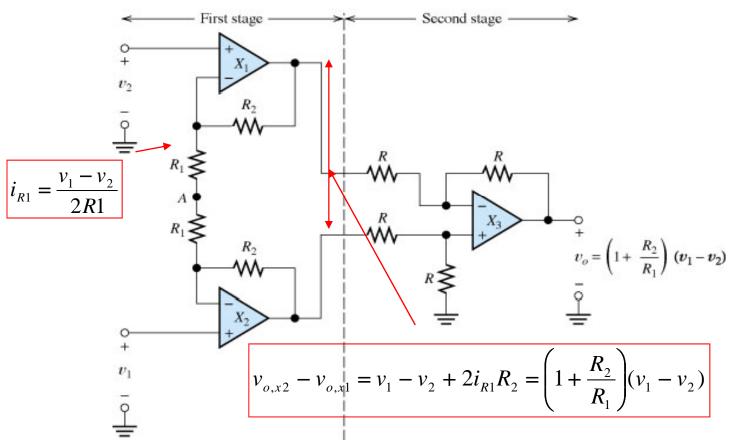


Sensores de Presión


Monolítico

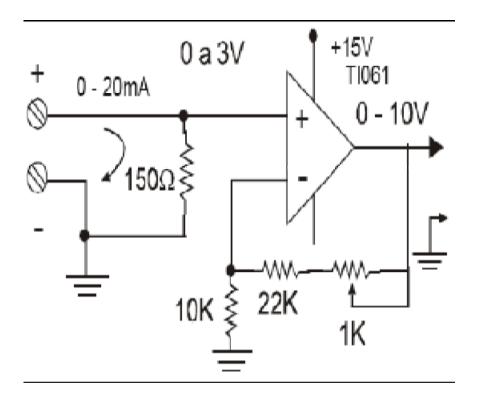

Sensores de Humedad (Suelo)

Sensores de Aceleración



Comparación Sensores

Sensor	Caracteristicas electricas	Requerimientos de condicionamiento de señal
Termocupla	Bajo voltaje de salida, baja sensitividad, respuesta nolineal	Sensor de temperatura de referencia (compensación de juntura fria) Amplificación de elevada ganancia Linealización
RTD	Baja resistencia Baja sensitividad Respuesta nolineal	Excitación de corriente Linearización
Strain gauge	Baja resistencia Baja sensitividad Respuesta nolineal	Excitación de voltaje/corriente Amplificación Conexionado de puente de medición Linearización
Termistor	Elevada resistencia y elevada sensitividad Respuesta altamente nolineal	Excitación de voltaje/corriente con resistencia de referencia
Acelerometro activo	Elevado voltaje/corriente de salida	Amplificación moderada
AC Linear Variable Differential Transformer (LVDT)	Voltaje de salida AC	Excitación de alterna Demodulación Linearización Introducción a la E


Acondicionamiento de señales

Conversión corriente a tensión

Habitualmente empleados en aquellos sensores cuya salida es de corriente.

