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Carrier Transport:     Drift

 

■

 

If an electric field is applied to silicon, the holes and the electrons “feel” an 
electrostatic force 
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■

 

Picture of effect of electric field on representative electrons: moving at the 
thermal velocity = 10

 

7

 

 cm/s ... 

 

very fast

 

, but colliding every 0.1 ps = 10

 

-13

 

 s. 
Distance between collsions = 10

 

7

 

 cm/s x 10

 

-13

 

 cm = 0.01 
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m

 

■

 

The average of the position changes for the case with 
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 > 0 is 
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* xi = initial position  * xf, n = final position of electron n after 7 collisions 
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Drift Velocity and Mobility

 

■

 

The 

 

drift velocity v

 

dn 

 

of electrons is defined as:

 

■

 

Experiment shows that the drift velocity is proportional to the electric field for 
electrons 

,

with the constant 

 

µ

 

n

 

 defined as the 

 

electron mobility

 

.

 

■

 

Holes drift in the direction of the applied electric field, with the constant 

 

µ

 

p

 

 
defined as the 

 

hole mobility

 

.

How do we know what’s positive and what’s negative?

vdn
∆x
∆t
------=

vdn µnE–=

vdp µpE=

E

x
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x

positive: negative:
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Electron and Hole Mobilities

 

■

 

mobilities vary with doping level -- plot is for 300 K = room temp.

 

■

 

“typical values” for bulk silicon - assuming around 5 x 10

 

16

 

 cm

 

-3

 

  doping

 

µ

 

n

 

 = 1000 cm

 

2

 

/(Vs)

 

µ

 

p

 

 = 400 cm

 

2

 

/(Vs)

 

■

 

at electric fields greater than around 10

 

4

 

 V/cm, the drift velocities
saturate --> max. out at around 10

 

7

 

 cm/s. Velocity saturation is very 
common in VLSI devices, due to sub-micron dimensions
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Carrier Transport:     Drift Current Density

 

Electrons drifting opposite to the electric field are carrying negative charge; 
therefore, the 

 

drift current density

 

 is:

 

J

 

n
dr

 

 = 

 

(-q) n v

 

dn

 

               units: Ccm

 

-2

 

 s

 

-1 

 

= Acm

 

-2

 

Note that 

 

J

 

n
dr

 

 is in the 

 

same

 

 direction as the electric field.

For holes, the mobility is 

 

µ

 

p

 

 and the drift velocity is in the same direction as the 
electric field:    

 

v

 

dp

 

 = 

 

µ

 

p 

 

E

 

The hole drift current density is:

 

J

 

p
dr

 

 = 

 

(+q) p v

 

dp

 

 

Jn
dr = (-q) n (- µn E) = q n µn E 

Jp
dr

 = q p µp E
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Drift Current Directions and Signs

 

■

 

For electrons, an electric field in the +

 

x direction will lead to a drift velocity in 
the -x direction (vdn < 0) and a drift current density in the +x direction (Jn

dr > 0).

■ For holes, an electric field in the +x direction will lead to a drift velocity in the 
+x direction (vdp >0) and a drift current density in the +x direction (Jn

dr > 0).
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Carrier Transport:  Diffusion

Diffusion is a transport process driven by gradients in the concentration of particles 
in random motion and undergoing frequent collisions -- such as ink molecules in 
water ... or holes and electrons in silicon.

Mathematics:   find the number of carriers in a volume Aλ on either side of the 
reference plane, where λ is the mean free path between collisions.

■ Some numbers:   average carrier velocity = vth = 107 cm/s, average
interval between collisions = τc = 10-13 s = 0.1 picoseconds

mean free path =  λ = vth τc = 10-6 cm = 0.01 µm

■ half of the carriers in each volume will pass through the plane before their next 
collision, since their motion is random

xr − λ xr + λxr

reference plane
(area = A) 

x

p(x)

p(xr − λ)

p(xr + λ) volume Aλ:
holes moving
in − x direction cross
reference plane within
∆t = τc.    

volume Aλ:
holes moving 
in + x direction cross
reference plane within 
∆t = τc.

hole diffusion

Jp
diff (positive)
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Carrier Transport:
Diffusion Current Density

■ Current density = (charge) x (# carriers per second per area):

■ If we assume that λ is much smaller than the dimensions of our device, then we 
can consider λ = dx and use Taylor expansions :

,    where Dp = λ2 / τc is the diffusion coefficent

J p
diff

q

1
2
--- p x λ–( )Aλ 1

2
--- p x λ+( )Aλ–

Aτc
----------------------------------------------------------------------=

J p
diff

qDp xd
dp

–=
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Electron Transport by Diffusion

■ Electrons diffuse down the concentration gradient, yet carry negative charge --> 
electron diffusion current density points in the direction of the gradient

■ Total current density: add drift and diffusion components for electrons and for 
holes --

■ Fortunately, we will be able to eliminate one or the other component in finding 
the internal currents in microelectronic devices.

n(x)

Jn
diff ( < 0)

Jn
diff ( > 0)

x

Jn Jn
dr

Jn
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+ qnµnE qDn xd
dn

+= =

J p J p
dr

J p
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+ qpµpE qDp xd
dp

–= =
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Carrier Transport by Diffusion

■ Holes diffuse “down” the concentration gradient and carry a positive charge --> 
hole diffusion current has the opposite sign to the gradient in hole concentration 
dp/dx

■ Electrons diffuse down the concentration gradient, yet carry a negative charge
--> electron diffusion current density has the same sign as the gradient in 
electron concentration dn/ dx.

 p(x)

Jp
diff ( > 0)

Jp
diff ( < 0)

x

n(x)

Jn
diff ( < 0)
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diff ( > 0)

x



EE 105 Spring 1997
Lecture 2

Electron Diffusion Current Density

■ Similar analysis leads to 

,

where Dn is the electron diffusion coefficient (units: cm2/s)

■ Numerical values of diffusion coefficients: use Einstein’s relation

■ The quantity kT/q has units of volts and is called the thermal voltage, Vth:

mV,

at “room temperature,” with 25 mV for a cool room (62 oF) and 26 mV for a 
warm room (83 oF).

We will pick 25 mV or 26 mV depending on which gives the “roundest” 
numbers.

Jn
diff

qDn
dn
dx
------=

Dn

µn
------- kT

q
------=

Vth
kT
q

------ 25 26–= =



EE 105 Spring 1997
Lecture 2

Total Current Densities

■ Add drift and diffusion components for electrons and for holes --

■ Fortunately, we will be able to eliminate one or the other component of the 
electron or the hole current in our analysis of semiconductor devices. 

Jn Jn
dr

Jn
diff

+ qnµnE qDn xd
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J p J p
dr

J p
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+ qpµpE qDp xd
dp

–= =



EE 105 Spring 1997
Lecture 2

IC Fabrication Technology

■ History:

1958-59:   J. Kilby, Texas Instruments and R. Noyce, Fairchild 
1959-70:   Explosive growth in US (bipolar ICs)
1970-85:   MOS ICs introduced, RAMs, microprocessors, Japan
                  catches up to US in volume
1985-95:   PC revolution, improved design software for complex
                  CMOS integrated systems, US leads in micro-
                   processors, Japan in RAMs
1996-2000  > 108 devices/chip ( = 1000 Mbit dRAM), US remains
                   competitive -- even dominates -- sectors of the market;
                   spin-offs from IC technology in MEMS (micro electro-
                 mechanical systems) for sensing acceleration

■ Key Idea:  batch fabrication of electronic circuits

An entire circuit, say 106 transistors and associated wiring -- can be made in and 
on top of a single silicon crystal by a series of process steps similar to printing.

The silicon crystal is a thin disk about the size of a small dinner plate (ca. 1996) 
called a wafer. More than 100 copies of the circuit are made at the same time.

■ Results: 

1. Complex systems can be fabricated reliably

2. Cost per function drops as the process improves (e.g., finer printing),
since the cost per processed wafer remains about the same
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Photolithography

■ The essential process step:   makes possible the transfer of a series of patterns 
onto the wafer -- all aligned to within 0.1 µm

■ Process “Tool” -- wafer stepper

■ UV-sensitive film is called photoresist. Regions exposed to UV dissolve in 
developer (for positive photoresist -- the type we will consider)

mask

lens

unexposed
dice

wafer scan direction

field area is 
opaque

ultraviolet light illumination

region of
silicon
wafer

(coated with
photoresist)

exposed
dice
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Exposure, Development, and Pattern Transfer

■ Simple example of a layout and a process (or recipe)

* Layout is the set of mask patterns for particular layers (one in this case)

* Process is the sequence of fabrication steps

■ Visualize by generating cross sections through the structure as it is built up 
through the process

x (µm)
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A A

B B

Mask
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