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Sheet Resistance

 

■

 

Rewrite the resistance equation to separate (

 

L / W

 

), the length-to-width ratio ... 
which is the number of “squares” 

 

N

 

❐

 

 from 

 

R

 

❐

 

, 

 

the sheet resistance = 

 

(

 

σ

 

n

 

 

 

t

 

)

 

-1

 

 

 = 

 

R

 

❐

 

 

 

(

 

L/W)

 

 = 

 

R

 

❐

 

 

 

N

 

❐

 

The sheet resistance is under the control of the 

 

process designer

 

; the number of 
squares is determined by the layout and is specified by the 

 

IC designer

 

.

For average doping levels of 10

 

15 

 

cm

 

-3

 

 to 10

 

19

 

 cm

 

-3

 

 and a typical layer thickness 
of 0.5 

 

µ

 

m, the sheet resistance ranges from 100 k

 

Ω/

 

❐

 

 to 10 

 

Ω/

 

❐

 

. 

Other conducting materials:     (MOSIS 1 

 

µ

 

m CMOS process

R
L

qµnNdWt
------------------------ 1

qµnNdt
------------------- 

  L
W
-----= =

n+ polysilicon (t =500 nm)     20

Ω / ❐ 

aluminum (t = 1 µm)     0.07
silicided polysilicon     5
silicided source/drain diffusion     3
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Integrated Circuit Resistors

 

■

 

Fabricate an n-type resistor in a p-type substrate using the process described in 
Chapter 2.

 

■

 

Given the sheet resistance, we need to find the number of squares for this layout 

 

L

 

 / 

 

W

 

 = 9 squares
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Laying Out a Resistor

 

■

 

Rough approach:  

 

R

 

 known --> 

 

N

 

❐

 

 = 

 

R

 

 / 

 

R

 

❐

 

. 

Select a width 

 

W

 

 (possibly the minimum to save area) --> 
the length 

 

L

 

 = 

 

W

 

 

 

N

 

❐

 

 

 

and make a rectangle 

 

L

 

 x 

 

W 

 

in area

Add contact regions at the ends ... ignore their contribution to 

 

R

 

■

 

More careful approach: 
account for the contact regions and also, for corners

Measurement shows that the effective number of squares of the “dogbone” style 
contact region is 0.65 and for a 90

 

o

 

 corner is 0.56.

For the resistor with 

 

L

 

 / 

 

W

 

 = 9, the contact regions add a significant amount to 
the total square count:

 

N

 

❐

 

 

 

= 9 + 2 (0.65) = 10.3

In design, the contact regions and the corners should be accounted for to accurately 
determine the layout needed to yield the desired resistance.
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Uncertainties in IC Fabrication

 

The precision of transistors and passive components fabricated using IC technology 
is surprisingly, 

 

poor

 

!

Sources of variations:

 

■

 

ion impant dose varies from point to point over the wafer and from wafer to 
wafer

 

■

 

thicknesses of layers after annealing vary due to temperature variations across 
the wafer

 

■

 

widths of regions vary systematically due to imperfect wafer flatness 
(leading to focus problems) and randomly due to raggedness in the photoresist 
edges after development

 

■

 

etc., etc. 
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Quantifying Variations in Device Parameters

 

We will write an uncertain parameter (such as the acceptor conc.) as:

where  is the 

 

average doping 

 

and  is the 

 

normalized uncertainty

 

(Note - we’ve swept a lot of probability and statistics under the rug here)

As an example, an average acceptor concentration 

 

N

 

a = 1016 cm-3 and a normalized 
uncertainty  means that the acceptor concentra- tion ranges from

  to  

How do variations combine to determine the variation in an IC resistor?

■ assume that the variations are independent

■ assume that the normalized uncertainty of a function of several variables is the 
square root of the sum of the squares of the individual uncertainties

(Note - this assumes a “normal” distribution (bell curve))

Na Na 1 εNa
±( )=

Na εNa

εNa
0.04=

0.96
16×10 cm

3–
1.04

16×10 cm
3–

εT εa
2 εb

2 εc
2

+ +=
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IC Resistor Uncertainty

Note that Nd, µn, t, L, and W are all subject to random variations

The average resistance is found by substituting the averages:

The normalized uncertainty in resistance is found from the “sum of squares” of the 
normalized uncertainties in Nd, µn, t, L, and W

This estimate is reasonable for relatively small uncertainties  and 
independent variables

R
1

qNdµnt
------------------- 

  L
W
----- 

 =

R
1

qNdµnt
-------------------

 
 
  L

W
----- 

 =

εR εNd

2 εµn

2 εt
2 εL

2 εW
2

+ + + +=

ε 0.1<
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Linewidth Uncertainties

■ Due to lithographic and etching variation, the edges of a rectangle are “ragged” -
- greatly exagerrated in the figure 

■ The width is

   --->  

■ Conclusion 1:   wider resistors have smaller normalized uncertainty (since δ is 
independent of width)

■ Conclusion 2:  the length L >> W and so its normalized uncertainty is negligible 
compared to that of W

δ /2

δ /2

W 

L

W W
δ
2
---± δ

2
---± W δ±= = W W 1

δ
W
-----± 

  W 1 εW±( )= =
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Geometric Design Rules

Uncertainties in the linewidth and the overlay precision of successive masks 
determines (in part) the rules for laying out masks
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Electrostatics:
The Key to Understanding Electronic Devices

Physics approach: vector calculus, highly symmetrical problems

Gauss’s Law:       

Def. of Potential:    

Poisson’s Eqn.:     

Device physics

Real problems (not symmetrical, complicated boundary conditions)

Gauss’s Law:     

Definition of Potential:    

Poisson’s Equation:    

εE( )∇• ρ=

E φ∇–=

ε φ∇–( )( )∇• ε φ∇ 2 ρ= =

d εE( )
dx

--------------- ρ=

E
dφ
dx
------–=

d
dx
------ ε dφ

dx
------–


 
 


 εd

2φ

dx
2

---------– ρ= =
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Boundary Conditions

1. Potential:       

2.  Electric Field:   

where Q is a surface charge (units, C/cm2) located at the interface

for the case where Q = 0:

φ x=0
-( ) φ x=0

+( )=

x

φ(x)

0

1 2

ε1E x=0
-( ) Q+ ε2E x=0

+( )=

x

E(x)

0

ε1 = 3ε2 

21

common materials:   

 silicon, εs = 11.7 εo

silicon dioxide (SiO2), εox =3.9 εo
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Intuition for Electrostatics

“Rules of Thumb” for sketching the solution BEFORE doing the math:

■ Electric field points from positive to negative charge

■ Electric field points “downhill” on a plot of potential

■ Electric field is confined to a narrow charged region, in which the positive charge 
is balanced by an equal and opposite negative charge

■ Use boundary conditions on potential or electric field to “patch” together 
solutions from regions having different material properties

■ Gauss’s law in integral form relates the electric field at the edges of a region to 
the charge inside. Often, the field on one side is known to be zero (e.g., because 
it’s on the outside of the charged region), which allows the electric field at an 
interface to be solved for directly

Charge density functions:  only two cases needed for basic device physics

ρ = 0  −−>  E constant   -->  φ linear

ρ = ρo = constant   --> E linear   --> φ quadratic

■ surface or sheet charge Q is sometimes present (e.g., on the surface of good 
conductors); the effect on electric field can be incorporated through the 
boundary condition
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Example I:   Applied Electrostatics

Sketch the electric field and the charge.

ρ(x)

x

Given:  
charge distribution
  ρ(x)

Given: Given:
φ(x << 0) = 0.5 V φ(x >> 0) = - 0.4 V

x

E

- 0.5

0.5

x

φ
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Example II:  Applied Electrostatics

* Given the electric field,

Sketch the charge density and the potential

x

E(x)

x

φ(x)

x

ρ(x)

Given:  φ(x >>0) = 0.3 V
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