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Electrostatics:
The Key to Understanding Electronic Devices

Physics approach: vector calculus, highly symmetrical problems

Gauss’s Law:       

Def. of Potential:    

Poisson’s Eqn.:     

Device physics

Real problems (not symmetrical, complicated boundary conditions)

Gauss’s Law:     

Definition of Potential:    

Poisson’s Equation:    
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Boundary Conditions

1. Potential:       

2.  Electric Field:   

where Q is a surface charge (units, C/cm2) located at the interface

for the case where Q = 0:

φ x=0
-( ) φ x=0

+( )=

x

φ(x)

0

1 2

ε1E x=0
-( ) Q+ ε2E x=0

+( )=

x

E(x)

0

ε1 = 3ε2 

21

common materials:   

 silicon, εs = 11.7 εo

silicon dioxide (SiO2), εox =3.9 εo
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Intuition for Electrostatics

“Rules of Thumb” for sketching the solution BEFORE doing the math:

■ Electric field points from positive to negative charge

■ Electric field points “downhill” on a plot of potential

■ Electric field is confined to a narrow charged region, in which the positive charge 
is balanced by an equal and opposite negative charge

■ Use boundary conditions on potential or electric field to “patch” together 
solutions from regions having different material properties

■ Gauss’s law in integral form relates the electric field at the edges of a region to 
the charge inside. Often, the field on one side is known to be zero (e.g., because 
it’s on the outside of the charged region), which allows the electric field at an 
interface to be solved for directly

Charge density functions:  only two cases needed for basic device physics

ρ = 0  −−>  E constant   -->  φ linear

ρ = ρo = constant   --> E linear   --> φ quadratic

■ surface or sheet charge Q is sometimes present (e.g., on the surface of good 
conductors); the effect on electric field can be incorporated through the 
boundary condition
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Example I:   Applied Electrostatics

Sketch the electric field and the charge.

ρ(x)

x

Given:  
charge distribution
  ρ(x)

Given: Given:
φ(x << 0) = 0.5 V φ(x >> 0) = - 0.4 V

x

E

- 0.5

0.5

x

φ
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Example II:  Applied Electrostatics

* Given the electric field,

Sketch the charge density and the potential

x

E(x)

x

φ(x)

x

ρ(x)

Given:  φ(x >>0) = 0.3 V
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Application of Gauss’s Law

 

■

 

At a point 

 

x

 

, the electric field can be found as the charge enclosed, divided by the 
permittivity of the material ...

 

caveats 

 

(warnings):

(i) the field must be zero at the other side of the charged region

(ii) the sign of the field can be found by keeping track of the +

 

x 

 

direction and the 
one-dimensional equivalent of the “outward  normal;” however, the best 
approach is to know the sign of the field from the distribution of charge in the 
problem

 

■

 

Example: metal-oxide-silicon structure

 

■

 

Find 

 

E

 

(

 

x = 

 

0

 

+

 

) ... just inside the silicon 

x

ρ(x)

Xd

QG

- tox

Find E(x = - tox / 2)
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Boundary Condition on 

 

E

 

 

 

(cont.)

 

■

 

Sketch 

 

E

 

(

 

x

 

) from 

 

x

 

 = - 

 

t

 

ox

 

 to 

 

x

 

 = 

 

X

 

d

 

 

 

■

 

Sketch 

 

φ

 

(

 

x

 

) through the structure, given that 

 

φ

 

(

 

X

 

d

 

) = 400 mV

- tox Xd

E(x)

- tox Xd

φ(x)

0.4 V
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Potential and Carrier Concentration in Silicon

 

■

 

What is a convenient reference for the electrostatic potential in silicon?

 

Thermal equilibrium: 

 

 no external stimulus --> must have:

 

 

J

 

p 

 

= 0 and 

 

J

 

n

 

 = 0.

where we have used Einstein’s relation.

 mV at “cool” room temperature to

26 mV at “warm” room temperature 

 

V

 

th

 

 is called the 

 

thermal voltage.

0∴ qnoµnE qDn xd

dno+ qnoµn
dφ
dx
------– 

  qDn

dno

dx
---------+= =

dφ
Dn

µn
-------

dno

no
---------

 
 
  kT

q
------

dno

no
---------

 
 
 

Vth

dno

no
---------

 
 
 

= = =

Dn

µn
------- kT

q
------ Vth 25= = =



EE 105 Spring 1997
Lecture 5

The Intrinsic Potential Reference 

■ By integrating the equation relating potential to the electron concentration from 
a position xa to position x, we find that:

We can choose any reference; one convenient choice is to set:

φ(xa) = 0 when no(xa) = ni = 1010 cm-3 at room temperature.

■ Using this reference, the potential in thermal equilibrium can be found, given the 
electron concentration:

Donor concentrations from 1013 to 1019 cm-3 therefore correspond to potentials of 
(60 mV) x 3 = 180 mV to (60 mV) x 9 = 540 mV (at room temperature)

φ x( ) φ xa( )– Vthln
no x( )

no xa( )
---------------( )=

φ Vthln
no

ni
-----( ) 26mV( )ln 10( )log

no

10
10

-----------
 
 
 

60mV( )log
no

10
10

-----------= = =
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The 60 mV Rule 

The hole concentration can also be related to the potential, by repeating the 
derivation starting with Jp = 0 or by substituting

po = ni
2 / no 

into the 60 mV rule for electrons. The result is:

φ Vthln
ni

po
------( ) 26– mV( )ln 10( )log

po

10
10

-----------
 
 
 

60– mV( )log
po

10
10

-----------
 
 
 

= = =

φ (mV)

φ (mV)

intrinsicp-type

po, equilibrium hole concentration (cm−3)

no, equilibrium electron concentration (cm−3)

n-type

p-type n-typeintrinsic
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Dispositivos Semiconductores

Potential Energy (PE) of Electrons
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Dispositivos Semiconductores

Potential Energy (PE) of Holes
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pn Junctions

■ ubiquitous IC structure -- pn junctions are everywhere!

■ thermal equilibrium:  no hole current, no electron current ... no voltage applied 
between metal interconnects (could short them together)

����

����
����

p

n
metal contact to
n side

metal contact
to p side(Na)

(Nd)

x = 0 

(b)

n type

p type
��
��

���
���

p type

x

x

(a)
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Diffusion Currents in Thermal Equilibrium

■ huge gradients in hole and electron concentration --> assume a transition region 
between - xpo and + xno

note: we don’t know how wide the transition region is (yet)

106

108
p-side:
no = ni

2 / Na

= 104 cm−3

n-side:
no = Nd = 1016 cm−3

 

no(x) [ cm−3] 

transition region
(−xpo < x < xno)
 

1010

1012

1014

1016

x

Jdiff
no

106

108

p-side:
po = Na = 1016 cm−3

n-side:
po =  ni

2
 / Nd

     = 104 cm−3

 

po(x) [ cm−3] 

transition region
(−xpo < x < xno)
 

Example: Na  = 1016 cm−3

                Nd  = 1016 cm−3

  

1010

1012

1014

1016

x

Jdiff
po

−xpo  xno

−xpo  xno

(a)

(b)
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Drift and Diffusion in the Transition Region

■ Jno = 0 and Jpo = 0 due to equilibrium

--> negative electric field in the transition region is needed ...

        where do + and - charges come from?

■ Answer:  the roll-off in electron concentration between x = 0 and xno
means that

since no(x) < Nd on the n-side of the transition region

■ On the p-side, the charge density is negative, since the hole concentration rolls 
off between x = - xpo and x = 0.

ρo x( ) q no x( )– Nd+( ) 0>=
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Qualitative Electrostatics in Equilibrium

■ From the charge density, we can find the electric field and the potential

φB

φo(x)

φn = 360 mV

φp = −360 mV

−xpo

− qNa = 1.6 × 10−3

+ qNd  = 1.6 × 10−3

xno x

−xpo xno

−xpo xno

Eo(x)

Eo(0)

n-sidep-side

n-sidep-side

n-sidep-side

field found
from integral
of charge density

x

x

(a)

(b)

(c)

−

+

ρo(x) (C/cm3)
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Quantitative pn Junction in Thermal Equilibrium 

The Depletion Approximation

■ In the bulk regions far away from the junction, we can approximate

ρ = 0

■ Near the junction, the charge density is non-zero. For example, on the n-side of 
the junction in the transition region, 0 < x < xno:

ρ = q (po + Nd - no - Na) = q (Nd - no)

since there are no acceptors on this side (Na = 0) and the hole concentration is 
negligible --> po = 0 (approx.)

The maximum positive value for charge density on the n-side is when there are 
no electrons present in equilibrium -- that is, when the silicon in the transition 
region is depleted of electrons.

For hand calculations, we will assume that 

ρ = ρmax = q Nd     ( 0 < x < xno )

ρ = - q Nd     ( -xp < x < 0)

and proceed to find the width of the transition region, which we will rename the 
depletion region. The charge density is assumed to fall off abruptly from these 
values to zero in the bulk regions, where x < - xpo and x > xno 
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One more time ...

■ Bulk silicon is NEUTRAL, to a good approximation

>> region 1 is bulk:

    

>> region 4 is bulk:

      

■ Near the junction, the silicon is DEPLETED of mobile carriers:

>> region 2 is depleted:

    

>> region 3 is depleted:

    

ρ q Nd po Na– no–+( ) 0≅= --> po Na≅

ρ q Nd po Na– no–+( ) 0≅= --> no Nd≅

ρ q Nd po Na– no–+( ) q– Na≅=

ρ q Nd po Na– no–+( ) qNd≅=

p n

1 2 3 4

-xpo xno

xno, xpo are not
known yet -- use
boundary conditions
to find them
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pn Junction in Thermal Equilibrium:
Using the Depletion Approximation

■ For detailed calculations, see Section 3.4. Analysis is straightforward, but 
involved. Use the fact that:

> Charge in depletion region must sum to zero (why?)

> Electrostatic potential is continuous

−xpo

−xpo

xno

xno

x

x

x

ρo(x)

Eo(x)

p-side

(a)

n-side

p-side n-side

−xpo xno

n-side

p-side

+ qNd

− qNa

Eo(x = 0) = −
qNdxno

εs

qNaxpo

εs
= − 

φo(x)

φB

φp

φn

(b)

(c)
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Depletion Widths in Thermal Equilibrium

■ Asymmetric junctions:   i.e.,     Na >> Nd  or Nd >> Na. 

>> most of depletion width is on the side with the lower doping, since

>> most IC pn junctions are highly asymmetric

xpo

2εsφB

qNa
---------------

 
 
  Nd

Nd Na+
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pn Junction under Reverse Bias

■ First, we must understand the complete structure of the pn junction-- starting in 
thermal equilibrium:

■ How can VD = 0 and the built-in potential barrier be φB = 1 V (approx.)?

Answer:   look at the complete circuit ... including the potential barriers at the 
p-type silicon-to-metal (φpm) and the metal-to-n-type silicon (φmn) junctions.

■ Kirchhoff’s Voltage Law:

therefore, the built-in voltage is given by:

����
����

����
����

p

n

xno

Wn

−Wp

−xpo

metal contact to
p side

metal inter-
connection

metal contact
to n side
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− 

+
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+

− 

+
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